Index

a priori knowledge, xiii–xiv, 176.
See also intrinsic plausibility; Reason.
abstract objects, 1–2, 5, 33, 107
and causality, 1n1, 5, 179
and perception, 155
as located, 1n1, 35n57
intuition of, 179.
See also mathematical objects; natural numbers
pure, 35–36, 100, 117, 151, 222
abstract particulars, 157n37
Ackermann, Wilhelm, 200, 200n20
actuality, 5, 24, 33
and intuition, 10
apparatus of reference, 4, 4n2, 11.
See also ontological commitment; quantification;
Quine; reference; singular terms
applications, problem of, 48, 73–79, 102.
See also external relations; structuralism
arithmetic
and epistemic stratification, 332
elementary axioms, 244
knowledge of, 328–329. See also intuitive knowledge
See also impredicativity; predicativity
substitutional interpretation of,
194–197, 335. See also substitutional quantification
arithmetic truth, relativity of, 60.
See also if-thenism
automorphisms, 107–109
Bealer, George, 327
being, 23–33, 24. See also Meinong;
Parsons; Routley
Benacerraf, Paul, 51n20, 106–107, 149n25
Benacerraf’s dilemma, xiv, 99n33
eliminative structuralism, 51
Bernays, Paul, xii, 134n38, 227n57, 280n20, 337.
See also Hilbert
epistemic stratification, 328
finitism, 185, 235, 236n2, 238, 239n8, 240, 243n20
intrinsic plausibility, 330
on intuition, 163n48, 171–172, 250
on recursion, 254–260
on structuralism, 42, 101, 109
sets as quasi-combinatorial, 136
Bonjour, Laurence, 321, 321n10
Boolos, George
plural quantification, 62, 65–73, 113, 120, 126–127. See also comprehension principles; ontological commitment; pluralities; second-order logic
Brouwer, L.E.J., xv. See also intuitionism and iteration, 174–175
language and mathematics, 313
on intuition, 9, 112, 139–140, 174, 176, 337
Burgess, John P., 1n1, 305–306
on fictionalism, 10n12
on structuralism, 107
plural quantification, 72–73
predicative arithmetic, 306n69
Cantor, Georg, 128, 136n42, 167
absolute infinity, 133
cardinal numbers, 198
cardinality, 75
collections, 98, 120n5
multiplicities, 49n18, 66, 71n73, 120, 126
cardinality, 190–199
and counting, 190, 190n4
Carnap, Rudolf, 10, 153n31
categoricity theorem, 75, 188, 273, 279–293, 298. See also Dedekind and first-order logic, 281–283
and second-order logic, 281
categories. See Kant
category theory, 109, 340
causal theory of knowledge, xiv, 99n33, 180n77
choice, axiom of, 126n20, 277, 339
Church, Alonzo, 14n16
classes, 65–66. See also generalization of predicate places; method of nominalization; method of semantic ascent; plural quantification and predicativity, 313. See also predicativity; substitutional quantification and semantic reflection, 314 as extensions, 313. See also sets collections, 98–99, 98n29, 119–120, 121n10, 132. See also iterative conception of set; multiplicities; pluralities colors, perception of, 155–157
comprehension principles, 59, 61n49, 63–64, 120n5, 127, 264
impredicative, 61, 70
restricted, 72
concept of an object in general. See objects; logical concept of object; Kant
crystal objects, 2, 5
sets of, 166–167. See also finite sets constructivism, xv, 94, 196, 249, 314, 319. See also intuitionism conventionalism, 153n31, 182n79
Davidson, Donald, 180n77, 216, 283
Dedekind abstraction, 47, 47n14, 104–105, 112
Dedekind, Richard, 49n18, 51, 57n38, 74, 189. See also Dedekind abstraction as eliminative structuralist, 46, 47n13, 73
categoricity theorem, xii, 46, 75, 188, 273, 281
on the natural numbers, 45–50, 45n10, 95
Dedekind-Peano axioms, 187, 236, 328–329, 331
deductivism. See if-thenism
Index

Descartes, René, 325
 on intuition, 140, 140n5, 141, 144,
 172, 247, 326
dialectical relation of principles. See
 Reason
Dummett, Michael
 impredicativity, 293–296, 294n44
 on indefinitely extensible concepts,
 134, 334–335, 334n37
 on structuralism, 51, 73–79
 uniqueness of the natural
 numbers, 273, 279–281, 279n20,
 280n21, 281n22, 287–288
eliminative structuralism, 46, 49,
 50–56, 78, 95, 100, 107, 117, 126,
 130n26, 280. See also logicism;
 nominalism
 and second-order logic, 61–73, 87,
 97
 modal, 55–56, 91–93
Euclidean geometry, xiv, 53, 59, 330
Evans, Gareth, 166n54
existence. See also being; ontological
 commitment; quantification;
 reference
 and reference, 30–31
 as relative to a structure, 115
exponentiation. See intuitive
 knowledge
expression-types. See types; strings;
 strokes
external relations, 75, 77–79, 115, 222.
 See also applications;
 structuralism
Feferman, Solomon, 290
 predicativity, 297–303, 297n48,
 308–315, 309n74, 310n76
 reflection, 310n76. See also
 semantic reflection
fictional objects, 23, 106
Field, Hartry, xivn4, 57n39, 89n18
 instrumentalism about
 mathematics, 10n12
 mereology, 62–65, 65n58
 nominalism, 57, 59, 95n25
 second-order logic, 62
 uniqueness of the natural
 numbers, 284n26, 285n27,
 289–290. See also uniqueness of
 the natural numbers
figure-ground, 173, 177
finite sequences, 202–205. See also
 linguistic objects;
 quasi-concrete objects; strings;
 strokes; types
 and induction, 203
 and intuitive knowledge, 217
 length of, 204
finite sets, xii, 199–202, 298–299.
 See also quasi-concrete objects,
 and induction, 201
 and iteration, 212
 and natural numbers, 199
 arbitrary finite sets, 212
 intuition of, 166–167, 191n5,
 205–218
 substitutional interpretation of,
 215–218, 231–234, 337. See also
 substitutional quantification
finitism, 235–243, 236n3, 271. See also
 Bernays; Hilbert; induction;
 recursion
 and Σ1-induction, 257
 and recursion, 257
first-order logic, 59–60, 87, 275
 and cardinality statements,
 192–193
Fraenkel, A.A., 131
Frege arithmetic, 221
Frege, Gottlob, 53, 104, 329
criterion of identity for numbers, 192n6, 197–198, 197n16
on actuality, 6, 6n6
on collections, 121n10
on concepts, 13–22, 13n14, 17n20, 61–62, 71
on induction, 270–271
on number as applying to objects in general, 37–38
on number as property of concepts, 36–37, 210
on numbers as cardinals, 73–79
on objects, 10–11
quantification, 267
Friedman, Harvey, 340
generalization of predicate places, 13–22, 70, 132, 269, 287, 313. See also Boolos; method of nominalization; method of semantic ascent; ontological commitment; plural quantification; quantification; Quine; second-order logic
generalization over languages, 291
 genetic method, xii, 120. See also Quine
Genzten, Gerhard, 308
Gödel, Kurt, 124, 133, 154, 154n32
a posteriori justification, 124–125, 324, 324n17
on finitism, 237–241, 237n6, 240n14
on intuition, 141, 144, 145n17, 146–147, 147n24, 149, 149n25, 155n36, 223, 316, 326–327
Goodman, Nelson, 62, 121n10, 323–324, 331. See also nominalism
grammar, 105, 107, 180
Hale, Bob, 174n68
on intuition, 139n4
Hart, W.D., xiv, xivn4
Hazen, Allen, 305
Hellman, Geoffrey, 91
predicativity, 298–303
Higginbotham, James, 69–70, 70n71
higher-order logic, 22, 154n32
Hilbert, David, xi, 9, 54, 112. See also Bernays
finitism, 185, 235–241, 236n2, 241n16, 272, 335
on intuition, 9, 139–140, 159, 163n48, 171, 247, 250
on recursion, 254–260
quantification, 251–252
Hodes, Harold, 53, 61, 67
holistic empiricism, 334, 337. See also Quine
Hume’s Principle, 221, 329. See also cardinality; Frege; Frege arithmetic
Husserl, Edmund, 41, 98n29, 157n37, 161
intuition of finite sets, 166, 209–210
on intuition, 143n10, 145–146, 149, 155, 173, 196, 223, 326
if-thenism, 53–56, 55n35, 58–61, 73. See also eliminative structuralism; logicism and consistency, 56, 58
and first-order logic, 59–60
modal, 92
problem of nonvacuity, 54
impredicativity, 64, 113, 295–296, 309n73, 312. See also
Index

comprehension principles; plural quantification; predicativity; second-order logic
inaccessible cardinals, 133. See also large cardinal axioms
indefinitely extensible concepts, 12, 134, 334–335
indispensability argument, 208, 208n34, 210–211
induction, xii, 102, 112, 176–177, 178, 201, 264–272, 331, 336. See also finitism; impredicativity; open-endedness; predicativity; recursion; second-order logic; second-order principles and quantification, 267
and second-order logic, xiii, 20, 236, 276, 293n43
and vagueness, 20, 261, 270, 270n7, 272
as a logical principle, 253
impredicativity of, 270, 293–307, 311
indefinite iteration, 175
open-endedness of, 20–21, 269–270, 290–293
schematic character of, 269–272
inductive definitions, 265, 265n3, 291–292
predicativity of, 307–315
inexhaustibility, 133–134, 339, 341n47
intrinsic plausibility, 152, 319–322
and induction, 333
and perception, 325–328
and set theory, 338–342, 341n47
of arithmetic, 330–331
relativity of, 326
intuitability, 8–10
in principle, 261n47
intuition, 138. See also linguistic objects, quasi-concrete objects; strings; strokes; types
and arbitrary strings, 171, 173–178
and causality, 149n25
and cognitive limitations, 207
and deduction, 142, 142n9, 146n20, 247–252
and imagination, 173, 181
and induction, 175
and possibility, 261–262, 261n47
and structuralism, 151–152
and the conceptual, 142–143
and vagueness, 166–171
as analogous to perception, 8, 143–148, 152, 206
as factive, 140–143
as opposed to perception, 164–166, 169, 181
Hilbertian, 159–171
immediacy of, 8, 144
intuition of, xii, 143–152, 143n10, 154–159
intuition of vs intuition that, 8, 139
mathematical. See mathematical intuition
of abstract objects, 179. See also abstract objects; finite sets; mathematical objects; natural numbers
of finite sets, 166–167. See also abstract objects; finite sets; mathematical objects; natural numbers
of mathematical objects. See also abstract objects; finite sets; mathematical objects; natural numbers
of mathematical objects, 8–9
rational. See rational intuition
representation in, 9
intuitionism, xv, 104, 153, 314, 334n36
and finitism, 251n31
and intuitive knowledge, 251
intuitive knowledge, 162, 186, 217, 316
and addition, 255
and deduction, 172–173, 172n66, 224, 247–252
and exponentiation, xii, 256–262, 256n41, 271, 332
and finitism, 235–243
See also finitism; induction; recursion
and intuitionism, 251
and iteration, 177, 254
and multiplication, 255
and quantification, 251–252
and recursion, 252, 254–260
and the successor function, 244–247
of arithmetic, 171–178, 235–262, 333–338
of strings, 235
iterative conception of set, 38, 118, 122–124, 123n13, 128, 132, 338
and the power set axiom, 135–137
principle of plenitude, 135
weak conception, 135
Julius Caesar problem, 105
justification of set theory, 122–137, 338–339
a posteriori, 124, 131, 136, 341, 341n47
holistic, 125, 339–340
intuitive, 124, 126–137
Kant, Immanuel, xii, 11, 182n79, 316, 331n30
intuition a priori, 149–150, 182
on actuality, 5–6
on intuition, 8–10, 138, 139, 142, 143, 143n11, 146, 146n20, 147, 149, 155, 166, 176, 181–183
on Reason, 317n1, 327
on the categories, 4–6
on the concept of an object in general, 4–8
Keränen, Jukka, 107
Kim, Jaegwon, 1n1, 180n77
Koellner, Peter, 134n38, 340n46, 341n47
Kreisel, Georg, 21
on finitism, 239, 241
Kripke, Saul, 80, 81n1, 84
Kronecker, Leopold, 297n48
Ladyman, James, 108
large cardinal axioms, 88, 124–125, 340–342
and intrinsic plausibility, 90, 341–342
Lavine, Shaughan, 136n42
uniqueness of the natural numbers, 290–293
Lawvere, F.W., 282n25
Leibniz, G.W., 145, 147
Leitgeb, Hannes, 108
Lewis, David
on abstract-concrete distinction, 1n1
on set theory, 129–130, 130n26
limitation of size, 130n26, 132–135, 132n34. See also replacement
linguistic objects. See also quasi-concrete objects; strings; strokes; types
and nominalism, 159, 159n41, 161–164
Index

as abstract, 160
as quasi-concrete, 160
as types, 158–164, 214
incompleteness of, 183–185
perception of, 157–164, 179–181
logic, 88, 317
and intuition, 247–252
and ontological commitment, 88
as general, 250
first-order. See first-order logic
generality of, 248, 250, 318
intuitionistic, 250, 251
second-order. See second-order logic
topic neutrality, 153
logical concept of object, 3–7, 10–12,
24, 29–33, 99–100, 336
and intuition, 218
logicism, 53–56, 88
Lorenzen, Paul, 310–315
Löwenheim-Skolem theorem, 277–279
Maddy, Penelope, 110n47, 166n53,
208n34, 340n46
on collections, 121n8
perception of sets, 167n56, 181n78,
207–211
Martin, Donald A., 324n17, 341n47
Martin-Löf, Per, 104, 196n11, 282n25,
314n85
mathematical induction. See induction
mathematical intuition, 139, 148–152
and causality, 149
mathematical knowledge. See also intrinsic plausibility; intuitive knowledge; Reason;
and proof, 82
conventionalism, 152–153
empiricism, 153
mathematical modality. See mathematical possibility; modality
mathematical objects, 1
and causality, 1n1, 149, 180n77
as positions in structures, 41
as potential, 91
elimination of, 2, 96, 99n33, 215
incompleteness of, 25n33, 106, 151
intuition of, 9, 148–152
nature of, 2, 40–43, 90, 100–116, 151
pure, 36, 42, 107, 117, 151
mathematical possibility, 90–92, 114,
176, 178, 261–262, 261n47
mathematics
epistemic stratification of, 327–328
generality of, 90
necessity of, 89–92
obviousness of, 153, 332
ontological commitment, 154
topic neutrality, 153
McCarthy, Timothy, 92n21, 97n27
McGee, Vann, 227n57, 289n35
meaning intentions, 145
Meinong, Alexius, 23–29, 25n33,
26n38, 28n42
on false propositions, 28n43
mereology, 62, 129
See also Lewis; nominalism;
second-order logic; set theory
method of nominalization, 15–22, 62,
62n50. See also generalization of predicate places; method of semantic ascent; plural quantification; second-order logic
method of semantic ascent, 19–22,
62n50, 70, 310. See also
generalization of predicate places; method of
nominalization; plural
quantification; second-order
logic
modal logic, 319
quantificational, 127
modal nominalism, 56, 59, 61, 92–100,
161, 241n16
modalism, 92–100, 92n22, 94n24
modality, 55, 80
absolute, 87
absolute vs. nonabsolute, 83
de re, 92n21
epistemic, 81n1
epistemic vs nonepistemic, 80
logical, 86–89, 89n18
mathematical, 86–92, 93, 114–115.
See also mathematical
possibility
metaphysical, 83–85, 90–91
physical, 84, 91, 98
possible worlds, 96
provability, 81–82
multiple reductions, 42, 48–50,
102–106. See also eliminative
structuralism
multiplicities, 66, 70, 120, 126. See also
collections; pluralities; sets
rigidity of, 127, 127n23
Myhill, John, 293n43, 294n44, 313

Nagel, Thomas, 318n3, 325
natural numbers
and impredicativity, 293–307.
See also arithmetic;
impredicativity; induction;
predicativity; recursion
and induction, 186–187, 264–272,
272n10. See also schemata;
second-order principles
and iteration, 177, 186, 260
and substitutional quantification,
195
and vagueness, 273. See also
open-endedness; vagueness
as a progression, 188–189
as a type, 101, 104–105, 219, 269
as cardinals, 38n61, 73–79, 101,
189–190, 196, 222
as objects, 106–107, 333
as ordinals, 74, 101, 189, 198–199,
222
as pure abstract objects, 36, 224
as quasi-quasi concrete, 37
as sui generis, 101–103
as types, 206n27, 211n39
as types of finite sets, 202, 205
as types of sequences, 205
genetic account of, 205, 218, 224
intuition of, 154, 186, 195, 207,
222–224
uniqueness of. See uniqueness of
the natural numbers
naturalistic epistemology, xiv, 99n33
Nelson, Edward, 294n44, 303–305
nominalism, xi, 56–61, 72, 96, 247.
See also eliminative
structuralism; logicism
about linguistic objects, 159.
See also linguistic objects;
strings; strokes; types
and first-order logic, 59–61
and second-order logic, 61–73
and syntax. See nominalistic syntax
and types, 179
modal. See modal nominalism
problem of nonvacuity, 57–59,
93. See also problem of
nonvacuity
nominalistic syntax, 56, 58, 161
and consistency, 58, 58n43
noneliminative structuralism, 51, 100–116, 221
and the natural numbers, 189
nonstandard models, 102, 188, 272–279, 275n14, 276n16, 292.
See also uniqueness of the natural numbers and induction, 278
nonstandard models, 102, 188, 272–279, 275n14, 276n16, 292.
See also uniqueness of the natural numbers and induction, 278
and the natural numbers, 189
nonstandard models, 102, 188, 272–279, 275n14, 276n16, 292.
See also uniqueness of the natural numbers and induction, 278
numbers. See also natural numbers; numerals; ordinals and cardinality, 190–199
as cardinals, 196
as objects, 194–199
as ordinals, 198
as types of finite sets, 202
reference to, 197
sameness of, 194
numerals, 191, 194
objective reality, 8
objectivity, 11, 318n3
objects
abstract. See abstract objects
actual, 10, 28, 57
and existence, 23–33
and logic, 3, 7, 10–12, 24, 336. See also apparatus of reference
as opposed to entities, 3, 13–22. See also being: Meinong
canonical expressions for, 195, 335
classification of, 2
concept of, 3–8, 98, 218. See also Kant; logical concept of object.
concrete. See concrete objects
type of indiscriminables, 108, 108n43, 108n44. See also automorphisms
linguistic. See linguistic objects
mathematical. See mathematical objects
nature of, 3, 90, 99–100
number of, 37. See also cardinality
quasi-concrete. See quasi-concrete objects
ontological commitment, 4, 51, 62, 66–68, 70–73, 126–127, 195, 211, 215–217. See also apparatus of reference; existence; generalization of predicate places; method of nominalization; method of semantic ascent; plural quantification; second-order logic; substitutional quantification
and first-order logic, 11–12
and reference, 29–31
open-endedness, xiii, 20–21, 63, 267.
See also indefinitely extensible concepts; induction; nonstandard models; schemata; uniqueness of the natural numbers; vagueness
ordinals, 123, 308
as generalized types, 217
Parsons, Terence, 25, 26n38
perception. See intuition
physicalism, 57. See also nominalism
Plantinga, Alvin, 84, 84n8
plural logic, 62, 72, 120
plural quantification, 65–73. See also generalization of predicate places; method of nominalization; method of semantic ascent; second-order logic
© Cambridge University Press
www.cambridge.org
Index

and ontological commitment, 62, 126
pluralities, 70, 126–127, 132
rigidity of, 127, 127n23
Poincaré, Henri
on induction, xii, 297
predicativity, 296, 312, 312n81, 313
possible worlds, 83, 96. See also
modality
potential totality. See indefinitely
extensible concepts
power set, axiom of, 130, 134, 135–137.
See also indefinitely extensible
concepts; inexhaustibility;
iterative conception of set;
justification of set theory;
open-endedness; predicativity;
reflection principles
a posteriori justification, 136
predicates. See generalization of
predicate places; method of
nominalization; method of
semantic ascent;
open-endedness; second-order
logic
and open-endedness, 63, 267
predication, 30–32. See also
generalization of predicate
places; method of
nominalization; method of
semantic ascent; second-order
logic
and reference, 13–22, 209, 327
predicativism, 134. See also
impredicativity, predicativity
predicativity, 61, 196, 260, 296–297,
311
and exponentiation, 303–304
as opposed to constructivity, 313
given the natural numbers, 309
primitive recursive arithmetic, 237,
243
and logic, 249–252
as logic-free, 249, 259
problem of nonvacuity, 48–50, 54–55,
93, 95, 97–100, 117, 219–222. See
also eliminative structuralism;
nominalism
progressions, 188–190
second-order definable operations,
189
projective determinacy, 125, 125n17
provability logic, 81–82
Putnam, Hilary, xiv, 56n36, 97
if-thenism, 53–54, 59–60
mathematical modality, 89n18, 92
nonstandard models, 288
on second-order logic, 96–97, 97n27
quantification. See also apparatus of
reference;
and existence, 23–33, 25n33. See
also being; existence
and finitism, 251–252
domain of, 267–269
numerical, 193
over numbers, 220–222
plural. See plural quantification
second-order. See second-order
logic
substitutional. See substitutional
quantification
quantifiers
generalized, 71–72, 88, 193. See also
ontological commitment
numerical, 193
quasi-concrete objects, 9, 33–39, 43,
113, 183, 242, 242n17, 242n18
Index

and intuition, 155–159. See also Hilbertian intuition
and perception, 35
and structuralism, 115, 151–152
and their representations, 34–37
Quine, W.V., xii, xiii, 84n8, 121
existence, 23
mathematical knowledge, 153, 332
on objects, 10–12
on structuralism, 42, 125
on types, 35
ontological commitment, 70–72
semantic ascent, 20

rational intuition, 321, 325–328, 337.
See also intrinsic plausibility; intuitive knowledge; Reason
and deduction, 326–327
rational knowledge, 316. See also rational intuition
Rawls, John, 324, 324n15, 331
Reason. xiii, 147, 316–328. See also intrinsic plausibility
and argument, 317–319
and arithmetical, 328–338
and logic, 317–319
and systematization, 322
as court of appeal, 324–325
dialectical relation of principles, 322–324, 330n25, 331n30
recursion, 254–260, 266
and impredicativity, 271, 294–295
reference, 4, 107. See also apparatus of reference; ontological commitment
and context, 103–104
of predicates, 13–22, 209, 327
to nonexistent objects, 23–33
reflection principles, 133–134, 134n38, 340n47. See also
inexhaustibility; iterative conception of set; limitation of size; open-endedness;
replacement
reflective equilibrium, 324
replacement, axiom of, 130–134, 339.
See also iterative conception of set; justification of set theory;
limitation of size
and reflection principles, 133–134
Resnik, Michael, 184n82, 323n14, 332–333, 336
on structuralism, 40–41, 115n57
set-theoretic conception of structure, 44
Rheinwald, Rosemarie, 55n35, 92n42
Rorty, Richard
on intuition, 138, 138n1, 140, 142
Rosen, Gideon, 1n1
Routley, Richard, 26n36, 26n38, 29–33, 33n53
neutral quantification, 29–30
Russell, Bertrand, 73, 104
class as many, 66, 71n73, 120
on false propositions, 28n43
on induction, 297
on Meinong, 25, 32
predicativity, 311–312
Russell’s paradox, 17, 22, 32n51, 121, 122, 126, 127. See also
inexhaustibility;
open-endedness
schemata, xiii, 19, 269, 290–293
Schultz, Johann, 8n9
Schütte, Kurt, 309, 309n74
second-order logic, xiii, 13, 22, 52–53, 73, 75, 88–96, 265, 270, 329
and generalization of predicate places, 70
and impredicativity, 270–293
and ontological commitment, 61
monadic, 66
ontological commitment, 66–73
plural interpretation. See plural quantification
second-order principles, xiii, 20, 64, 132, 276
self-evidence, 320, 320n7. See also intrinsic plausibility
semantic reflection, 21–22, 271, 277, 285, 288, 310, 310n76, 313. See also indefinitely extensible concepts; open-endedness; schemata
sense-qualities
perception of, 155–157, 179
separation, axiom of, 18–19, 21, 300–303, 313
See also iterative conception of set; justification of set theory
impredicativity, 301–303, 301n56
set theory
and epistemic stratification, 340–342
and mereology, 128–130
and structuralism, 97, 100, 111, 117–119, 123, 128–129. See also structuralism; structures
as a framework for mathematics, 110, 110n47
intrinsic plausibility of, xivn3, 338–339. See also intrinsic plausibility; justification of set theory; large cardinal axioms
justification of. See justification of set theory
modal, 129n23, 132n33
objectivity of, 124
sets
and vagueness, 166–167, 166n54
as collections, 98–100, 113, 119–120, 122–124, 129, 206, 218
as constituted by their elements, 118–120, 122, 126, 128–130
as extensions, 113, 119–122, 135, 312, 339
as pluralities, 113, 119–122, 126–127
as trees, 128–129
concept of, 38
extensionality of, 129, 338
finite. See finite sets
inexhaustibility of, 133–135, 339
intuition of, 212–216
iterative conception of. See iterative conception of set
ontological conception of, 117n1, 118–124, 129–130
quasi-concrete, 35
structuralist conception of, 125, 128. See also structuralism; structures
urelements, 118n2
Shapiro, Stewart, 51–52
Shoenfield, Joseph, 122, 122n13, 124, 126, 131
simply infinite system, 45, 52, 75, 188, 298. See also Dedekind initial element of, 76–77
Simpson, Stephen G., 297n48, 340
singular terms, 3–4. See also apparatus of reference
Skolem, Thoralf, 131, 279n20
relativity of set theory, 278
Sosein, 23, 27. See also Meinong, being
Spinoza, Baruch de, 147
Steiner, Mark, 1n1, 180n77
strict finitism, 261, 282n25, 329
strings. See also linguistic objects; strokes; types
and induction, 175–178, 178n75, 236
and iteration, 175–178
arbitrary, 173–175
as sequences, 168
as types, 168–171, 168n58
infinity of, 176–178
intuition of, 185
intuitive knowledge of, 235
stroke-arithmetic, 159, 235. See also Bernays; Hilbert; intuition; strings; strokes
strokes. See also linguistic objects; quasi-concrete objects; strings; types
and nominalism, 160–171
and vagueness, 163–164, 163n48, 168–171
arbitrary string of, 173–175
intuition of, 165–166
perception of, 164
strings of, 159–161, 169–170
structuralism, xi, 40–143, 197, 280
and applications, 48, 73–79
and context, 103–104
and convention, 77, 77n82
and external relations, 75, 78–79, 222
and incompleteness, 106, 183. See also abstract objects; mathematical objects; objects and intuition, 222–224. See also quasi-concrete objects
and limitation of size, 135
and modality, 83, 189
and second-order logic, 52–53, 189. See also eliminative structuralism; second-order logic
and set theory, 97–100, 111, 117–137. See also set theory; structures
and the nature of mathematical objects, 40–43, 90–92. See also mathematical objects eliminative. See eliminative structuralism in re and ante rem, 51–52
noneliminative. See noneliminative structuralism
problem of nonvacuity, 48–49, 93, 219–222, 334
Index

378

on Dedekind, 47, 47n13
on finitism, 239–241, 253, 314n85
Tieszen, Richard, 330n25
transfinite induction, 308–311, 308n71
type theory, 14n16, 105, 340
ramified, 305–307
types, 34. See also linguistic objects; strings; strokes
and causality, 179
and nominalism, 160, 179
and vagueness, 162–164, 167–171, 169n60
criteria of identity, 161
intuition of, 162, 165–166
paradigmatic role of, 162–163
types and tokens, 158
contrasted with elements and sets, 214–215
uniqueness of the natural numbers, 60, 188, 272–293. See also
nonstandard models;
open-endedness; schemata;
second-order principles;
second-order logic

and communication, 279–293
and first-order logic, 275
and induction, 275–277
and radical interpretation, 283–285
and second-order logic, 188
vague objects, 166n54, 169n60
vagueness
of induction, 20–21, 261, 270, 272.
See also Dummett; indefinitely extensible concepts;
open-endedness; schemata
of laws of logic, 20–21
Wang, Hao, 132, 311
Wetzel, Linda, 160n44
Weyl, Hermann, 296–297, 303, 312
Wirklichkeit, 5–8. See also actuality
Wollheim, Richard, 184
Woodin, W. Hugh, 342
Wright, Crispin, 174n68
on intuition, 139n4
Zach, Richard, 238
Zermelo, Ernst, 18, 49n18, 122
definite property, 18n21, 19n22