The Padé approximant of a given power series is a rational function of numerator degree L and denominator degree M whose power series agrees with the given one up to degree $L + M$ inclusively. A collection of Padé approximants formed by using a suitable set of values of L and M often provides a means of obtaining information about the function outside its circle of convergence, and of more rapidly evaluating the function within its circle of convergence.

Applications of these ideas in physics, chemistry, electrical engineering, and other areas have led to a large number of generalizations of Padé approximants which are tailor-made for specific applications. Applications to statistical mechanics and critical phenomena are extensively covered, and there are newly extended sections devoted to circuit design, matrix Padé approximation, computational methods, and integral and algebraic approximants.

The book is written with a smooth progression from elementary ideas to some of the frontiers of research in approximation theory. Its main purpose is to make the various techniques described accessible to scientists, engineers, and other researchers who may wish to use them while also presenting the rigorous mathematical theory.

This second edition has been thoroughly updated, with several new sections added, including a substantial new chapter on multiseries approximants.
ENCyclopedia of Mathematics and its Applications

Edited by G.-C. Rota

Volume 59

Padé Approximants, second edition
ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

4 W. Miller, Jr. Symmetry and separation of variables
6 H. Minc Permanents
11 W. B. Jones and W. J. Thron Continued fractions
12 N. F. G. Martin and J. W. England Mathematical theory of entropy
18 H. O. Fattorini The Cauchy problem
19 G. G. Lorentz, K. Jetter, and S. D. Riemenschneider Birkhoff interpolation
21 W. T. Tutte Graph theory
22 J. R. Bastida Field extensions and Galois theory
23 J. R. Cannon The one-dimensional heat equation
25 A. Salomaa Computation and automata
26 N. White (ed.) Theory of matroids
27 N. H. Bingham, C. M. Goldie, and J. L. Teugels Regular variation
28 P. P. Petrushev and V. A. Popov Rational approximation of real functions
29 N. White (ed.) Combinatorial geometries
30 M. Pohst and H. Zassenhaus Algorithmic algebraic number theory
31 J. Aczel and J. Dhombres Functional equations containing several variables
32 M. Kuczma, B. Choczewski, and R. Ger Iterative functional equations
33 R. V. Ambartzumian Factorization calculus and geometric probability
34 G. Gripenberg, S.-O. Londen, and O. Staffans Volterra integral and functional equations
35 G. Gasper and M. Rahman Basic hypergeometric series
36 E. Torgersen Comparison of statistical experiments
37 A. Neumaier Interval methods for systems of equations
38 N. Korneichuk Exact constants in approximation theory
39 R. A. Brualdi and H. J. Ryser Combinatorial matrix theory
40 N. White (ed.) Matroid applications
41 S. Sakai Operator algebras in dynamical systems
42 W. Hodges Model theory
43 H. Stahl and V. Totik General orthogonal polynomials
44 R. Schneider Convex bodies
45 G. Da Prato and J. Zabczyk Stochastic equations in infinite dimensions
46 A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. Ziegler Oriented matroids
47 G. A. Edgar and L. Sucheston Stopping times and directed processes
48 C. Sims Computation with finitely presented groups
49 T. Palmer Banach algebras and the general theory of *-algebras
50 F. Borceux Handbook of Categorical Algebra I
51 F. Borceux Handbook of Categorical Algebra II
52 F. Borceux Handbook of Categorical Algebra III
54 A. Katok and B. Hasselblatt Introduction to the modern theory of dynamical systems
ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

PADÉ APPROXIMANTS
Second Edition

GEORGE A. BAKER, JR.
Theoretical Division
Los Alamos National Laboratory

PETER GRAVES-MORRIS
Department of Mathematics
University of Bradford

© Cambridge University Press 2001
To our wives

Carroll Thomas and Lucia Graves-Morris

and to our families

and

to the memory of

Elizabeth Coles Baker
CONTENTS

Preface

Preface to the first edition xi

1 Introduction and definitions 1
1.1 Introduction and Notational Conventions 1
1.2 Pade Approximants to the Exponential Function 8
1.3 Sequences and Series; Obstacles 15
1.4 The Baker Definition, the C-Table, and Block Structure 20
1.5 Duality and Invariance 32

2 Elementary developments 38
2.1 Numerical Calculation of Padé Approximants 38
2.2 Decipherment of Singularities from Padé Approximants and
Apparent Errors 44
2.3 Some Explicit Forms for Padé Denominators 56
2.4 Bigradients and Hadamard’s Formula 62

3 Padé approximants and numerical methods 67
3.1 Aitken’s \(\Delta^2 \) Method as \([L/1]\) Padé Approximants 67
3.2 Acceleration and Overacceleration of Convergence 71
3.3 The \(\varepsilon \)-Algorithm and the \(\eta \)-Algorithm 73
3.4 Wynn’s Identity and the \(\varepsilon \)-Algorithm 81
3.5 Common Identities and Recursion Formulas 85
3.6 Recursive Calculation of the Coefficients of Padé Approximants 92
3.7 Kronecker’s Algorithm and Cordellier’s Identity 106
3.8 The Q.D. Algorithm and the Root Problem 115

4 Connection with continued fractions 122
4.1 Definitions, Recursion Relations, and Computation 122
4.2 Continued Fractions Derived from Maclaurin Series 129
4.3 Various Representations of Continued Fractions 141
4.4 The Berlekamp–Massey Algorithm and an Application of It 153
4.5 Different Types of Continued Fractions 165
4.6 Examples of Continued Fractions Which Are Padé Approximants 173
4.7 Convergence of Continued Fractions 182
Contents

5 Stieltjes series and Pólya series
- 5.1 Introduction to Stieltjes Series: 193
- 5.2 Convergence of Stieltjes Series: 201
- 5.3 Moment Problems and Orthogonal Polynomials: 213
- 5.4 Stieltjes Series Convergent in $|z| < R$
 - 5.4.1 Hausdorff Moment Problem: 220
 - 5.4.2 Integer Moment Problem: 234
- 5.5 Stieltjes Series with Zero Radius of Convergence: 236
- 5.6 Hamburger Series and the Hamburger Moment Problem: 245
- 5.7 Pólya Frequency Series: 264

6 Convergence theory
- 6.1 Introduction to Convergence Theory: Rows: 276
- 6.2 de Montessus’s Theorem: 280
- 6.3 Hermite’s Formula and de Montessus’s Theorem: 290
- 6.4 Uniqueness of Convergence: 297
- 6.5 Convergence in Measure: 305
- 6.6 Lemniscates, Capacity, and Measure: 316
- 6.7 The Padé Conjecture: 330

7 Extensions of Padé approximants
- 7.1 Multipoint Padé Approximants: 335
- 7.2 Baker–Gammel Approximants: 362
- 7.3 Series Analysis: 372
- 7.4 Padé–Laurent, Padé–Fourier, and Padé–Tchebycheff Approximants: 378
- 7.5 Laurent–Padé Approximation and Toeplitz Systems: 389
- 7.6 Multivariable Approximants: 402

8 Multiseries approximants
- 8.1 Simultaneous Padé Approximants: 415
- 8.2 Operator Padé Approximants: 429
- 8.3 Rectangular Matrix Padé Approximants for Minimal Partial-Realization Problems: 442
- 8.4 Vector Padé Approximants: 466
 - 8.4.1 Functional Padé Approximants: 492
- 8.5 Hermite–Padé Polynomials: 494
 - 8.5.1 Minimality Definitions and Uniqueness: 497
 - 8.5.2 Table Structure Results: 501
 - 8.5.3 Recursion Relations: 515
 - 8.5.4 Existence of Sequences and the Modified Minimality Definition: 521
- 8.6 Integral and Algebraic Approximants: 524
 - 8.6.1 Monodromy Theory: 525
 - 8.6.2 Definitions and the Accuracy-through-Order Principle: 531
 - 8.6.3 Equivalence Properties: 538
 - 8.6.4 Invariance Properties: 539
 - 8.6.5 Separation Properties: 543
 - 8.6.6 Convergence Theory: 544
 - 8.6.7 Singular Index and Amplitude Computations: 564

9 Connection with integral equations and quantum mechanics
- 9.1 The General Method and Finite-Rank Kernels: 570
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2 Padé Approximants and Integral Equations with Compact Kernels</td>
<td>573</td>
</tr>
<tr>
<td>9.3 Projection Techniques</td>
<td>578</td>
</tr>
<tr>
<td>9.4 Potential Scattering</td>
<td>584</td>
</tr>
<tr>
<td>9.5 Derivation of Padé Approximants from Variational Principles</td>
<td>596</td>
</tr>
<tr>
<td>9.6 An Error Bound on Padé Approximants from Variational Principles</td>
<td>606</td>
</tr>
<tr>
<td>9.7 Single-sig Potentials in Scattering Theory etc.</td>
<td>608</td>
</tr>
<tr>
<td>9.8 Variational Padé Approximants</td>
<td>616</td>
</tr>
<tr>
<td>9.9 Singular Potentials</td>
<td>622</td>
</tr>
<tr>
<td>10 Connection with numerical analysis</td>
<td>628</td>
</tr>
<tr>
<td>10.1 Acceleration of Convergence</td>
<td>628</td>
</tr>
<tr>
<td>10.2 Tchebycheff's Inequalities for the Density Function</td>
<td>633</td>
</tr>
<tr>
<td>10.3 Collocation and the τ-method</td>
<td>639</td>
</tr>
<tr>
<td>10.4 Crank–Nicholson and Related Methods for the Diffusion Equation</td>
<td>646</td>
</tr>
<tr>
<td>10.5 Inversion of the Laplace Transform</td>
<td>654</td>
</tr>
<tr>
<td>10.6 Connection with Rational Approximation</td>
<td>656</td>
</tr>
<tr>
<td>10.6.1 The Carathéodory–Fejér Method</td>
<td>663</td>
</tr>
<tr>
<td>10.7 Padé Approximants for the Riccati Equation</td>
<td>670</td>
</tr>
<tr>
<td>11 Connection with quantum field theory</td>
<td>674</td>
</tr>
<tr>
<td>11.1 Perturbed Harmonic Oscillators</td>
<td>674</td>
</tr>
<tr>
<td>11.1.1 The Peres Model</td>
<td>675</td>
</tr>
<tr>
<td>11.1.2 The Anharmonic Oscillator</td>
<td>678</td>
</tr>
<tr>
<td>11.2 Pion–Pion Scattering</td>
<td>679</td>
</tr>
<tr>
<td>11.3 Lattice–Cutoff $\lambda\phi^2_n$ Euclidean Field Theory, or the Continuous-Spin Ising Model</td>
<td>684</td>
</tr>
<tr>
<td>Appendix: A FORTRAN FUNCTION</td>
<td>690</td>
</tr>
<tr>
<td>Bibliography</td>
<td>695</td>
</tr>
<tr>
<td>Index</td>
<td>741</td>
</tr>
</tbody>
</table>
PREFACE

We are glad that the first edition of these volumes is thought to have achieved its main aim of making mathematical techniques more available, not only to mathematicians, but also to the wider scientific and engineering community.

We have been glad to take the opportunity provided by this edition to incorporate the most salient aspects of the large body of new results which have been obtained since the publication of the original edition. The incorporation of this new material has led to the need to make several significant rearrangements of the previous material.

We wish to record our gratitude for the mathematical contributions and company of Arne Magnus and Helmut Werner, both of them friends who are missed by many of us. The influence of their work is to be found in Chapter 4.

A few infelicities which have been noticed in the original edition have been corrected.

George A. Baker, Jr.
Peter Graves-Morris
PREFACE TO THE FIRST EDITION

These two volumes are intended to serve as a basic text on one approach to the problem of assigning a value to a power series. We have attempted to present the basic results and methods in as transparent a form as possible, in line with the general objectives of the Encyclopaedia. The general topic of Padé approximants, which is, among other things, a highly practical method of definition and of construction of the value of a power series, seems to have begun independently at least twice. Padé’s claim for credit is based on his thesis (1892), in which he developed the approximants and organized them in a table. He paid particular attention to the exponential function. He was presumably unaware of the prior work of Jacobi (1846), who gave the determinantal representation in his paper on the simplification of Cauchy’s solution to the problem of rational interpolation. Also, Padé’s work was preceded by that of Frobenius (1881), who derived identities between the neighboring rational fractions of Jacobi. It is interesting to note that Anderson seems to have stumbled upon some Padé approximants for the logarithmic function in 1740. A photograph of H. Padé is to be found in The Padé Approximant Method and Its Application to Mechanics, edited by H. Cabannes. A copy of his autographed thesis is to be found in the Cornell University Library.

This work has been distilled from an extensive literature, and The Essentials of Padé Approximants, written by one of us, has been an essential reference. We use the abbreviation EPA for this book, and refer to it often for a different or fuller treatment of some of the more advanced topics. While each book is entirely self-contained, our notation is normally compatible with EPA, and to a large extent the books complement each other. An important exception is that the Padé table in EPA is reflected through its main diagonal in our present notation. The
proceedings of the Canterbury Summer School and International Conference, edited by the other of us, contain diverse contributions which initiated in print the multidisciplinary view of the subject—a view we hope we have transmitted herein. The many publications which have contributed substantially to our text are listed in the bibliography. We are grateful to our numerous colleagues at Brookhaven, Canterbury, Cornell, Los Alamos, and Saclay in freely discussing so many topics which have made possible the breadth of our treatment. Especially, we thank Roy Chisholm, John Gammel, and Daniel Bessis for many conversations, and the C.E.A. at Saclay, where part of this book was written, for hospitality.

Our hardest task in writing this book was to choose a presentation which is both correct and readily comprehensible. A fully precise system based on rigorous analysis and set-theoretic language would have ensured total obscurity of the more practical techniques. Conversely, omission of all the conditions under which the theorems hold good would be absurdly misleading. We have chosen a level of presentation suitable for the topic in hand. For example, the connectivity of sets is mentioned where it is important, and otherwise it is omitted. The meaning of the order notation is clear in context. Both applications in physics and techniques recently developed are treated in a practical fashion.

Equations are referenced by a default option. Equation (I.6.5.3) is Equation (5.3) of Part I. Chapter 6; the Part and Chapter are dropped by default if they are the same as the source of the reference.

Finally, a spirit of evangelism may be detected in the text. When a review of rational approximation in 1963 can claim that Padé approximants cannot approximate on the entire range $(0, \infty)$ and be believed, a revision of view is overdue.

George A. Baker, Jr.
Peter Graves-Morris
1 October, 1980.