Cambridge University Press & Assessment 978-0-521-44964-9 — Magnetic Memory Denny D. Tang, Yuan-Jen Lee Frontmatter <u>More Information</u>

Magnetic Memory

If you are a semiconductor engineer or a magnetics physicist developing magnetic memory, get the information you need with this, the first book on magnetic memory.

From magnetics to the engineering design of memory, this practical book explains key magnetic properties and how they are related to memory performance, characterization methods of magnetic films, and tunneling magnetoresistance effect devices. It also covers memory cell options, array architecture, circuit models, and read-write engineering issues.

You'll understand the soft-fail nature of magnetic memory, which is very different from that of semiconductor memory, as well as methods to deal with the issue. You'll also get invaluable problem-solving insights from real-world memory case studies.

This is an essential book, both for semiconductor engineers who need to understand magnetics, and for magnetics physicists who work with MRAM. It is also a valuable reference for graduate students working in electronic/magnetic device research.

Denny D. Tang is Vice President of MagIC Technologies, Inc., and has over 30 years' experience in the semiconductor industry. After receiving his Ph.D. in Electrical Engineering from the University of Michigan in 1975, he spent 15 years at IBM T.J. Watson Research Center, Yorktown Heights, NY, 11 years at IBM Almaden Research Center at San José, CA, and 6 years at Taiwan Semiconductor Manufacturing Company (TSMC). He is a Fellow of the IEEE, TSMC, and the Industrial Technology Research Institute (ITRI).

Yuan-Jen Lee is a Senior Engineer at MagIC Technologies, Inc., where he develops advanced magnetic memory technology. He received his Ph.D. from the National Taiwan University in 2003, after which he worked for ITRI, Hsinchu, Taiwan, developing toggle MRAM and spin-torque MRAM.

Cambridge University Press & Assessment 978-0-521-44964-9 — Magnetic Memory Denny D. Tang, Yuan-Jen Lee Frontmatter More Information

Magnetic Memory

Fundamentals and Technology

DENNY D. TANG AND YUAN-JEN LEE MagIC Technologies, Inc.

Cambridge University Press & Assessment 978-0-521-44964-9 — Magnetic Memory Denny D. Tang, Yuan-Jen Lee Frontmatter More Information

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India
103 Penang Road, #05–06/07, Visioncrest Commercial, Singapore 238467
Cambridge University Press is part of Cambridge University Press & Assessment,

a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521449649

© Cambridge University Press & Assessment 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2010

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data Tang, Denny D.

Magnetic memory : fundamentals and technology / Denny D. Tang, Yuan-Jen Lee. p. cm. ISBN 978-0-521-44964-9 (Hardback)

 Magnetic memory (Computers) I. Lee, Yuan-Jen. II. Title. TK7895.M3T36 2010
 621.39'73–dc22

2009051398

ISBN 978-0-521-44964-9 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

1

2

Cambridge University Press & Assessment 978-0-521-44964-9 — Magnetic Memory Denny D. Tang, Yuan-Jen Lee Frontmatter <u>More Information</u>

Contents

Preface		<i>page</i> ix
Acknowled	gments	х
Basic elect	romagnetism	1
1.1 Intro	duction	1
1.2 Mag	netic forces, poles and fields	1
1.3 Mag	netic dipoles	2
1.4 Amp	ère's circuital law	3
1.5 Biot-	Savart Law	5
1.6 Mag	netic moments	5
1.7 Mag	netic dipole energy	6
1.8 Mag	netic flux	7
1.9 Mag	netic induction	7
1.10 Class	ical Maxwell equations of electromagnetism	8
1.11 Indu	ctance	9
1.12 Equa	tion tables	10
Hom	ework	11
Refe	rences	12
Magnetic f	Ims	13
2.1 Origi	n of magnetization	13
211	Russell–Saunders coupling	16
2.1.1		
2.1.1	jj coupling	16
2.1.1 2.1.2 2.2 Intro	JJ coupling duction of magnetic materials	16 17
2.1.1 2.1.2 2.2 Intro 2.2.1	JJ coupling duction of magnetic materials Diamagnetism	16 17 18
2.1.1 2.1.2 2.2 Intro 2.2.1 2.2.2	JJ coupling duction of magnetic materials Diamagnetism Paramagnetism	16 17 18 20
2.1.1 2.1.2 2.2 Intro 2.2.1 2.2.2 2.2.3	JJ coupling duction of magnetic materials Diamagnetism Paramagnetism Ferromagnetism	16 17 18 20 23
2.1.1 2.1.2 2.2 Intro 2.2.1 2.2.2 2.2.3 2.2.4	JJ coupling duction of magnetic materials Diamagnetism Paramagnetism Ferromagnetism Antiferromagnetism	16 17 18 20 23 28
2.1.1 2.1.2 2.2 Intro 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5	JJ coupling duction of magnetic materials Diamagnetism Paramagnetism Ferromagnetism Antiferromagnetism Ferrimagnetism	16 17 18 20 23 28 30
2.1.1 2.1.2 2.2 Intro 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.3 Ferro	JJ coupling duction of magnetic materials Diamagnetism Paramagnetism Ferromagnetism Antiferromagnetism Ferrimagnetism omagnet/antiferromagnet bilayer structure	16 17 18 20 23 28 30 30
2.1.1 2.1.2 2.2 Intro 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.3 Ferro 2.3.1	JJ coupling duction of magnetic materials Diamagnetism Paramagnetism Ferromagnetism Antiferromagnetism Ferrimagnetism magnet/antiferromagnet bilayer structure Intuitive picture in exchange bias	16 17 18 20 23 28 30 30 30 31

© in this web service Cambridge University Press & Assessment

Cambridge University Press & Assessment 978-0-521-44964-9 — Magnetic Memory Denny D. Tang, Yuan-Jen Lee Frontmatter <u>More Information</u>

vi	Contents		
	2.3.3 Theories of exchan	nge bias	35
	2.3.4 AFM domain wal	l model	36
	2.3.5 Random field mod	del	38
	2.4 Interlayer exchange coup	ling in ferromagnet/metal/ferromagnet	
	multilayer		39
	2.4.1 Ruderman–Kittel-	-Kasuya–Yosida interaction	41
	2.4.2 Néel coupling		44
	2.5 Micromagnetic simulation	n	46
	2.5.1 Anisotropy energy	7	46
	2.5.2 Exchange energy		47
	2.5.3 Magnetostatic ene	rgy	47
	2.5.4 Zeeman energy		48
	Homework		48
	References		49
3	Properties of patterned ferromag	netic films	51
	3.1 Introduction		51
	3.2 Edge poles and demagnet	tizing field	51
	3.2.1 Demagnetizing fac	ctor of elliptic-shaped film	52
	3.2.2 Edge curling		54
	3.3. Magnetic domain		55
	3.3.1 Transition region	between domains: domain wall	55
	3.3.2 Bloch wall and Ne	eel wall	57
	3.3.3 C-state, S-state an	d vortex	58
	3.4 Magnetization behavior u	inder an external field	59
	3.4.1 Magnetization rot	ation in a full film	60
	3.4.2 Magnetization rot	ation in a patterned film	61
	3.5 Magnetization switching		62
	3.5.1 Magnetization rot	ation and switching under a field	
	in the easy-axis di	rection	63
	3.5.2 Magnetization rot	ation and switching under two orthogonal	
	applied fields		64
	3.6 Magnetization behavior of	of a synthetic antiferromagnetic film stack	68
	Homework		71
	References		72
4	Magnetoresistance effects		74
	4.1 Introduction		74
	4.2 Anisotropic magnetoresis	tance	74
	4.3 Giant magnetoresistance		77
	4.4 Tunneling magnetoresista	ince	79
	4.4.1 Giant tunneling m	agnetoresistance	83
	4.4.2 Tunneling magnet	oresistance in perpendicular magnetic	
	tunneling junction		88

Cambridge University Press & Assessment 978-0-521-44964-9 — Magnetic Memory Denny D. Tang, Yuan-Jen Lee Frontmatter <u>More Information</u>

		Contents	vii
		Homework	89
		References	89
5	Field	1-write mode MRAMs	91
	5.1	Introduction	91
	5.2	Magnetic tunnel junction RAM cell	93
		5.2.1 Cross-point array	93
		5.2.2 1T-1MTJ cell	94
	5.3	Read signal	95
		5.3.1 Sense reference cell	96
		5.3.2 Sense amplifier	98
	5.4	Write bit cell with magnetic field	100
		5.4.1 Write-field conversion efficiency	100
		5.4.2 Write-line cladding	101
	5.5	Astroid-mode MRAM	102
		5.5.1 Switching-energy barrier of Astroid-mode write	102
		5.5.2 Write-error rate of a bit cell	105
		5.5.3 Write soft error rate of an array of memory cells	105
		Homework	106
		5.5.4 Solution to the write disturbance problem	106
	5.6	Toggle-mode MRAM	109
		5.6.1 Toggle-mode cell	109
		5.6.2 Switching of SAF free layer in toggle-mode write	111
		5.6.3 Energy diagram of toggle operation	112
		5.6.4 Write-current reduction	116
	5.7	Characterization method of MRAM chip write performance	116
	5.8	Thermally assisted field write	118
	5.9	Multi-transistor cells for high-speed MRAM operation	119
		References	120
6	Spin	i-torque-transfer mode MRAM	122
	6.1	Introduction	122
	6.2	Spin polarization of free electrons in ferromagnets	122
	6.3	Interaction between polarized free electrons and	
		magnetization – macroscopic model	124
	6.4	Spin-torque transfer in a multilayer thin-film stack	126
	6.5	Spin-transfer torque and switching threshold current density	129
	6.6	Switching characteristics and threshold in magnetic tunnel junctions	131
		6.6.1 Regimes of write pulse width	132
		6.6.2 Switching probability in the thermal regime	133
		6.6.3 Spin-torque-transfer switching under a magnetic field	140
		6.6.4 Magnetic back-hopping	141
	6.7	Reliability of tunnel barriers in MTJs	143
	6.8	SPICE model of MTJs and memory cells	144

Cambridge University Press & Assessment 978-0-521-44964-9 — Magnetic Memory Denny D. Tang, Yuan-Jen Lee Frontmatter <u>More Information</u>

viii Cont	ents	
6.9	Memory cell operation	146
	6.9.1 <i>I–V</i> characteristics of STT memory cell during write	148
	6.9.2 Read and write voltage window of STT memory cell	150
	6.9.3 Sense signal margin	151
	Homework	152
	6.9.4 Write-to-breakdown-voltage margin	152
6.10	Data retention and $E_{\rm b}$ extraction method	153
6.11	Thermal stability of STT memory chip	154
(10	Homework	155
6.12	Write-current reduction	156
	6.12.1 Nanocurrent-channel film-stack structure	157
	6.12.2 Double-spin-filter structure	159
(12	6.12.3 Perpendicular MTJ	159
6.13	Direct observation of magnetization reversal	161
	References	163
7 App	lications of MTJ-based technology	165
7.1	Introduction	165
7.2	MRAM market position	165
7.3	MTJ applications in CMOS SoC chips	169
	7.3.1 Embedded memory in logic chips	169
	7.3.2 Unbalanced MTJ flip-flop	169
	7.3.3 Non-volatile multiplexer	172
	7.3.4 MTJ data register	172
7.4	System-on-chip power reduction	173
7.5	Runtime reconfigurable electronic system	175
	References	175
App	endix A: Unit conversion table for cgs and SI units	176
App	endix B: Dimensions of units of magnetism	177
App	endix C: Physical constants	178
App	endix D: Gaussian distribution and quantile plots	179
App	endix E: Weibull distribution	181
App	endix F: Time-dependent dielectric breakdown (TDDB) of magnetic	
	tunnel junction devices	183
App	endix G: Binomial distribution and Poisson distribution	185
App	endix H: Defect density and the breakdown/TMR distribution	
	of MTJ devices	187
App	endix I: Fe, Ni and Co material parameters	189
App	endix J: Soft error, hard fail and design margin	190
Inde	x	193

Cambridge University Press & Assessment 978-0-521-44964-9 — Magnetic Memory Denny D. Tang, Yuan-Jen Lee Frontmatter <u>More Information</u>

Preface

The advent of semiconductor technology has impacted the lives of many of us since the 1970s. Silicon CMOS (complementary metal-oxide-semiconductor) devices are practically ubiquitous, and by the year 2000, the value of the semiconductor industry exceeded that of the automobile industry. The magnetic industry, on the other hand, is much smaller than the semiconductor industry. Engineering schools of universities rarely cover any courses in this discipline. Nonetheless, a tiny magnetic recording device is in the hard disk of every computer. Like CMOS devices, magnetic recording technology is being scaled down from generation to generation. At the time of writing, the physical size of the magnetic bit remains smaller than a DRAM bit on silicon chips.

Researchers working in these two communities had little in common until the development of the modern magnetic random access memory, or MRAM. A MRAM chip is built by integrating magnetic tunneling junction (MTJ) devices onto the silicon CMOS circuits. The research activity of MTJs in academia and industry, both hard disk and semiconductor, has been very active since it first showed signs of technology implication in the mid 1990s. That effort led to the mass production of the MTJ recording head in hard disk in 2006. In the same year, the semiconductor industry announced the first successful introduction of an MTJ memory product. The viability of MTJ technology is proven. It is expected that research activities will develop further, which will increase cooperation between these two research communities. The purpose of this book is to facilitate the dialog and to bridge the gap. Each simple homework problem and answer is designed to help readers to link the magnetics to the memory performance. Thus, the book is suitable for those with discipline of semiconductor devices and wish to expand their knowledge base into the field of magnetic memory, and for those in magnetics who wish to "fine-tune" magnetics for MRAM chips.

The book is organized into seven chapters. Chapter 1 reviews the electric current, as most electrical engineering students learn, in their sophomore and junior years, that magnetism results from an electric current. This chapter introduces readers to the unit conversion ready for the discussion in Chapter 2, which deals with the origin of magnetism in materials and introduces the concepts of electron spin, magnetic moments and its dynamics. It covers the microscopic view of the magnetic moment of an electron and an atom, and investigates its relationship with the macroscopic properties of magnetic thin film materials. Once the Cambridge University Press & Assessment 978-0-521-44964-9 — Magnetic Memory Denny D. Tang, Yuan-Jen Lee Frontmatter <u>More Information</u>

Preface

Х

film is patterned to make devices, it behaves very differently from a full film. Chapter 3 covers the properties of the patterned thin magnetic films. This leads to the discussion of magnetization switching properties of many modern magnetic RAM devices. Chapter 4 introduces the magnetoresistance effect in thin film stacks, covering AMR (anisotropy magneto-resistance), GMR (giant magnetoresistance) and TMR (tunnel magneto-resistance) effects. The magneto-resistance effect is the operational principle of all modern non-volatile magnetic memories. A thorough discussion of the magnetic tunnel junction is presented. A detailed description of the properties and the design of field-write modes magnetic memory device are given in Chapter 5 and that of spin-torque transfer mode in Chapter 6. The discussion also covers circuit aspects of the memory cell and memory array, and the circuit model of the magnetic tunnel junction device, so that one can gain a better perspective of the merits in the design of the magnetic tunnel junction for memory. Chapter 7 covers the present memory market and the position of the magnetic memory in this market. New applications of this technology will also be discussed.

This is a very active field. Papers and patent applications of the related subject appear continuously and in large quantities. This book aims to provide the reader with a sufficient understanding of the fundamental physics of magnetics, the properties of magnetic thin film materials, device properties, design, memory operation and many other aspects of engineering. It also aims to give those working with semiconductors a head start so that they may bring in more fruitful results to this relatively new field.

Acknowledgments

The authors would like to acknowledge the contribution made by their colleagues at MagIC Technologies, Inc., including Mao-min Chen, Terry Thong, Wiltold Kula, Cheng Horng, Ruth Tong, David Heim, Tai Min, Robert Beach, Guenole Jan and Karl Yang. Parts of their work are described in this book.

In addition, the authors would like to thank Stuart Parkin, William Gallagher, Jonathan Sun and Daniel Worledge of IBM; Professor Ching-Ray Chang of National Taiwan University; C.T. (Jack) Yao and Pantas Sutardja for numerous interactions; Anthony Oates of TSMC and Tak Ning of the IBM Watson Research Center, who helped us begin the writing process. The authors would also like to thank their families for lending their support during the manuscript preparation, especially Grace Tang, Pi-ju Liao and Minchene Tang.

Special thanks go also to our colleague in MagIC Technologies, Inc., Dr. Pokang Wang, for his critical reading of the manuscript and suggestions.