CAMBRIDGE SERIES ON HUMAN–COMPUTER INTERACTION 2

Formal Methods in Human–Computer Interaction
Cambridge Series on Human–Computer Interaction

Managing Editor: Professor J. Long,
Ergonomics Unit, University College, London.

Editorial Board
Dr P. Barnard, Medical Research Council,
Applied Psychology Unit, Cambridge, UK
Professor H. Thimbleby, Department of Computing Science,
University of Stirling, UK
Professor T. Winograd, Department of Computer Science,
Stanford University, USA
Professor W. Buxton, Rank Xerox Ltd, Cambridge EuroPARC, UK
Dr T. Landauer, Bellcore, Morristow, New Jersey, USA
Professor J. Lansdown, CASCAAD, Middlesex Polytechnic, UK
Professor T. W. Malone, MIT, Cambridge, Massachusetts, USA
Dr J. Grudin, MCC, Austin, Texas, USA

Titles in the Series
1. J. Long and A. Whitefield Cognitive Ergonomics and Human–Computer Interaction
Formal Methods in Human–Computer Interaction

Edited by Michael Harrison

University of York

and

Harold Thimbleby

University of Stirling
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>Contributors</td>
<td>xv</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>The role of formal methods in human-computer interaction</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Some examples</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>The scope of formal methods</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>Book structure</td>
<td>5</td>
</tr>
<tr>
<td>1.5</td>
<td>The future</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>HCI formalisms and cognitive psychology: the case of Task-Action Grammar</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>The notion of consistency</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Task-Action Grammar to analyse consistency</td>
<td>14</td>
</tr>
<tr>
<td>2.3.1</td>
<td>An informal account</td>
<td>14</td>
</tr>
</tbody>
</table>
CONTENTS

2.3.2 A formalisable account ... 16
2.3.3 TAG as a psychological theory 19
2.3.4 TAG as a predictive tool ... 20

2.4 Related research using rule-schemas 23
2.4.1 An executable Task-Action Grammar 23
2.4.2 Recognition of users’ plans 24
2.4.3 Inclusion of system responses 25
2.4.4 Formalising the underlying semantics 25

2.5 Applying TAG to life-size examples 26

2.6 Using TAG to capture cross-applicativeal consistency 31

2.7 The psychological credibility of lifesize TAG 36
2.7.1 TAG representations are fragile 37
2.7.2 Restrictions of features .. 38
2.7.3 Alteration of task features 39
2.7.4 Unrepresented knowledge 40

2.8 Formalisms in HCI: some evaluative remarks 43
2.8.1 Revelation .. 43
2.8.2 Prediction .. 45

2.9 Appendix: Task-Action Grammars 47
2.9.1 How to read a TAG ... 47
2.9.2 MacWrite .. 48
2.9.3 Dictionary of simple tasks in MacWrite 48
2.9.4 Rule schemas in MacWrite: task rules 49
2.9.5 Rule schemas in MacWrite: subtask rules 50
2.9.6 Multiplan .. 50
2.9.7 Dictionary of simple tasks in Multiplan 51
2.9.8 MacDraw .. 55
2.9.9 Dictionary of simple tasks in MacDraw 55
2.9.10 Common rules (‘MacGeneric’) 59
2.9.11 Rule schemas in MacGeneric: task rules 59
2.9.12 Rule schemas in MacGeneric: subtask rules 60
2.9.13 Common rules in Multiplan and MacDraw 61

3 Putting design into practice: formal specification and the user interface .. 63
 Roger Took

3.1 Introduction ... 63
3.1.1 Presenter .. 65
CONTENTS

3.2 The design process .. 66
 3.2.1 Software engineering and formal methods 66
 3.2.2 Formal notations and abstraction 67
 3.2.3 Notation and design 68
 3.2.4 A reflection on design in Z 71
 3.2.5 Differentiation ... 72
 3.2.6 Structuring ... 80
 3.2.7 The user interface 82

3.3 Constraints on design ... 83
 3.3.1 Soft constraints ... 83
 3.3.2 Firm constraints ... 85
 3.3.3 Hard constraints ... 87
 3.3.4 Environmental constraints 89
 3.3.5 Limitations of formal specification 94

3.4 Conclusions .. 96

4 Non determinism as a paradigm for understanding the user interface 97
 Alan Dix

 4.1 Introduction ... 97
 4.2 Unifying formal models with non determinism 98
 4.2.1 The PIE model .. 99
 4.2.2 Problems for temporal systems 100
 4.2.3 Problem for windowed systems 101
 4.3 Non deterministic PIEs 102
 4.3.1 Use for temporal systems 105
 4.3.2 Use for windowed systems 105
 4.3.3 Non deterministic properties of PIEs 106
 4.3.4 Summary—formal models and non determinism 107
 4.4 Non deterministic computer systems? 107
 4.4.1 The tension for the user 108
 4.4.2 Levels of non determinism 108
 4.4.3 Behavioural non determinism 109
 4.5 Sources of non determinism 110
 4.5.1 Non determinism due to timing 111
 4.5.2 Non determinism due to sharing 112
 4.5.3 Data uncertainty 113
 4.5.4 Procedural uncertainty 113
CONTENTS

4.5.5 Memory limitations 114
4.5.6 Conceptual capture 114
4.5.7 Discussion .. 115

4.6 Dealing with non determinism 115
4.6.1 Avoid it .. 116
4.6.2 Resolve it .. 117
4.6.3 Control it .. 118
4.6.4 Use it ... 120
4.6.5 Summary—informal analysis 121

4.7 Deliberate non determinism 121
4.7.1 Static and dynamic consistency 122
4.7.2 Intermittent update 123
4.7.3 Declarative interfaces 124
4.7.4 Non deterministic intermittent update 125
4.7.5 Is it a good idea? 125

4.8 Discussion ... 126

5 A state model of direct manipulation in interactive systems .. 129

Michael Harrison and Alan Dix

5.1 Introduction .. 129
5.2 Direct manipulation 130
5.3 Chapter plan .. 131
5.4 A formal framework for direct manipulation 131
5.4.1 Principles ... 131
5.4.2 The interaction model 132
5.5 The relationship between input and command 135
5.5.1 Temporal ordering 135
5.5.2 Contextual problems 136
5.5.3 Adding structure to the input model 138
5.6 Mapping state to display 138
5.6.1 Display resolution 141
5.6.2 Partiality .. 143
5.7 Localising properties of direct manipulation systems 145
5.7.1 Visibility ... 146
5.7.2 Local properties when commands are visible 147
5.7.3 Exception models 148
5.8 Conclusions .. 150
CONTENTS

5.9 Acknowledgements ... 151

6 Specification, analysis and refinement of interactive processes 153

Bernard Sufrin and Jifeng He

6.1 Introduction .. 153
6.2 Processes ... 154
6.2.1 The simple model ... 155
6.2.2 Traces .. 158
6.2.3 The need for an improved model 158
6.2.4 The improved model 159
6.2.5 Failures .. 161
6.2.6 Sequential processes 162
6.2.7 Constructive specification of traces 163
6.3 Interactive processes .. 167
6.3.1 Experimenting with views and results 171
6.3.2 Equivalence of command sequences 174
6.3.3 Side-effects ... 175
6.3.4 Restartability ... 175
6.3.5 Relating views to results 176
6.3.6 Undoing .. 178
6.4 Interactive process refinement 179
6.4.1 A refinement ordering 179
6.4.2 Properties preserved by refinement 181
6.4.3 Verification ... 183
6.4.4 A strategy for refinement 185
6.5 Specifying processes in Z: an example 186
6.5.1 Text manipulation .. 186
6.5.2 Translating to a process 189
6.5.3 Display and mouse 191
6.5.4 Putting the components together 192
6.5.5 Analysis of the editor 195
6.5.6 Summary .. 197
6.6 Further work .. 197
6.7 Acknowledgements ... 198
6.8 Glossary ... 199
CONTENTS

7 From abstract models to functional prototypes 201

Colin Runciman

7.1 Introduction ... 201
7.2 Functional programming 202
7.2.1 Recursively defined functions over lists 203
7.2.2 Higher order functions 204
7.2.3 Infinite lists and lazy evaluation 204
7.2.4 Strictness ... 205
7.2.5 Reasoning about programs 206
7.2.6 Transformation of programs 207
7.3 The PiE model ... 209
7.3.1 Displays and results 210
7.3.2 Uses of the model 211
7.4 PiE as a higher order function 211
7.4.1 PiE enrichments and composed partial applications 213
7.4.2 Specific PiE examples 215
7.5 Transformational refinement 217
7.5.1 Transforming the model alone 218
7.5.2 Model shifting and state-machine specialisation 224
7.5.3 Application-specific transformation 230
7.6 Summary and conclusion 231

8 Designing abstractions for communication control 233

Gilbert Cockton

8.1 The need for specialised software tools. 233
8.2 Architecture and abstraction 235
8.3 Tooling the user interface 238
8.3.1 Communication control 239
8.4 Requirements for communication control 240
8.4.1 User requirements for communication control 240
8.4.2 Designer requirements for communication control 242
8.4.3 Satisfying requirements 244
8.5 A new communication control abstraction 247
8.5.1 Generative transition networks: fundamentals 247
8.5.2 A notation for GTNs 251
8.5.3 Example GTN specifications 254
8.5.4 Remarks on the examples 261
8.6 GTNs as communication control abstractions 262
8.7 The casting requirements 265
 8.7.1 Choice of abstraction and notation 266
 8.7.2 Evaluation of abstraction and notation 266
 8.7.3 Iterate or terminate? 267
8.8 Summary ... 270

9 Structuring dialogues using CSP 273
Heather Alexander

9.1 Introduction .. 273
9.2 Specifying user interfaces 275
9.3 Introduction to CSP 276
9.4 Examples .. 278
 9.4.1 Example: a menu-based system 278
 9.4.2 Example: concurrent dialogues 281
9.5 Executing CSP specifications 283
9.6 A family of dialogue design tools 284
 9.6.1 Dialogue outlines 284
 9.6.2 Dialogue scenarios 288
9.7 Dialogue prototypes 292
9.8 Discussion and conclusions 294

Bibliography .. 297

Index ... 317
PREFACE

This is the first book specifically to relate modern, formal, ideas in Software Engineering to Human Computer Interaction. The book is intended to be read by software engineers, HCI researchers, and postgraduate students working in or with HCI and Software Engineering.

By collecting and representing the state of the art in relevant HCI research, this book addresses the question of how software systems can be designed and built that incorporate a full consideration of the user. Formal design methods should capture the perspective of the user within a software engineering framework.

Our aim is to contribute to both HCI and formal methods by applying one to the other, in particular, by showing how formal methods may be used to model and implement prototypes of interactive systems. The material, then, is of advantage to people working in conventional HCI—we expose them to the power and relevance of formal methods—and conversely, to people working in formal methods—we expose them to the applications and potential in HCI.

Chapters 2 and 3 illustrate the gulf between software engineering and HCI. Subsequent chapters first show how formal modelling techniques may be used to describe interactive behaviour, and discuss how these models may be used to assist the design process (chapters 4, 5 and 6) and then discuss the relationship between models and implementations:
rapidly developed prototypes on the one hand; and system architectures on the other (chapters 7, 8 and 9).

A note on producing this book

This book was produced using \LaTeX, a system that enabled us to collate and edit the contributions and work at two distant sites in the UK, exchanging manuscripts and corresponding by email. \LaTeX produces very good results when it works; for our purposes, it was better than alternatives—but it would have been much better for want of a formal model!

Acknowledgements

The work collected here represents an outgrowth of the activities of the Human Computer Interaction Group at York, both through research carried out there since 1983 and workshops, colloquia and conferences organised by the editors. We are particularly grateful to members of our research groups for providing stimulating working environments—particularly Chris Roast who helped with the diagrams and Chris Johnson who read the penultimate version.

MacDraw and MacWrite are registered trademarks of Claris Corporation. MacIntosh is a registered trademark of Apple Computer Inc. Multiplan is a registered trademark of Microsoft Corporation. UNIX is a registered trademark of AT & T Bell Laboratories.
CONTRIBUTORS

Heather Alexander
British Telecom PLC,
Exchange House,
229, George Street,
Glasgow, G1 1B2,
Scotland.

Gilbert Cockton
Department of Computer Science,
University of Glasgow,
17, Lilybank Gardens,
Glasgow, G12 8QQ,
Scotland.

Alan Diz
Human Computer Interaction Group,
Department of Computer Science,
University of York,
Heslington,
York, YO1 5DD,
England.
<table>
<thead>
<tr>
<th>Contributors</th>
<th>MRC Applied Psychology Unit, 15, Chaucer Road, Cambridge, CB2 2EF, England.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thomas Green</td>
<td>Human Computer Interaction Group, Department of Computer Science, University of York, Heslington, York, YO1 5DD, England.</td>
</tr>
<tr>
<td>Michael Harrison</td>
<td>Programming Research Group, Oxford University Computing Laboratory, 8-11, Keble Road, Oxford, OX1 3QD, England.</td>
</tr>
<tr>
<td>Jifeng He</td>
<td>Department of Computer Science, University of York, Heslington, York, YO1 5DD, England.</td>
</tr>
<tr>
<td>Colin Runciman</td>
<td>GMD-IPSI, Cognitive User Interface Group, Dolivostr. 15, D-6100, Darmstadt, West Germany.</td>
</tr>
<tr>
<td>Franz Schiele</td>
<td>Programming Research Group, Oxford University Computing Laboratory, 8-11, Keble Road, Oxford, OX1 3QD, England.</td>
</tr>
<tr>
<td>Bernard Sufrin</td>
<td>Department of Computing Science, University of Stirling, Stirling, FK9 4LA, Scotland.</td>
</tr>
<tr>
<td>Harold Thimbleby</td>
<td></td>
</tr>
</tbody>
</table>
Contributors

Roger Took

Human Computer Interaction Group,
Department of Computer Science,
University of York,
Heslington,
York, YO1 5DD,
England.