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Symmetry and Its Discontents

The following paper consists of two parts. In the first it is argued that Bruno

de Finetti’s theory of subjective probability provides a partial resolution

of Hume’s problem of induction, if that problem is cast in a certain way.

De Finetti’s solution depends in a crucial way, however, on a symmetry

assumption – exchangeability – and in the second half of the paper the broader

question of the use of symmetry arguments in probability is analyzed. The

problems and difficulties that can arise are explicated through historical ex-

amples which illustrate how symmetry arguments have played an important

role in probability theory throughout its development. In a concluding section

the proper role of such arguments is discussed.

1. the de finetti representation theorem

Let X1, X2, X3, . . . be an infinite sequence of 0,1-valued random variables,

which may be thought of as recording when an event occurs in a sequence of

repeated trials (e.g., tossing a coin, with 1 if heads, 0 if tails). The sequence

is said to be exchangeable if all finite sequences of the same length with the

same number of ones have the same probability, i.e., if for all positive integers

n and permutations σ of {1, 2, 3, . . . , n},

P[X1 = e1, X2 = e2, . . . , Xn = en]

= P[X1 = eσ (1), X2 = eσ (2), . . . , Xn = eσ (n)],

where ei denotes either a 0 or a 1. For example, when n = 3, this means that

P[1, 0, 0] = P[0, 1, 0] = P[0, 0, 1] and

P[1, 1, 0] = P[1, 0, 1] = P[0, 1, 1].

(Note, however, that P[1, 0, 0] is not assumed to equal P[1, 1, 0]; in general,

these probabilities may be quite different.)

Reprinted with permission from Brian Skyrms and William L. Harper (eds.), Causation,

Chance, and Credence 1 (1988): 155–190, c© 1988 by Kluwer Academic Publishers.
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In 1931 the Italian probabilist Bruno de Finetti proved his famous de

Finetti Representation Theorem. Let X1, X2, X3, . . . be an infinite ex-

changeable sequence of 0,1-valued random variables, and let Sn = X1 +

X2 + · · · + Xn denote the number of ones in a sequence of length n. Then it

follows that:

1. the limiting frequency Z =: limn→∞(Sn/n) exists with probability 1.

2. if µ(A) =: P[Z ∈ A] is the probability distribution of Z, then

P[Sn = k] =

∫ 1

0

(n

k

)

pk(1 − p)n−kdµ(p)

for all n and k.1

This remarkable result has several important implications. First, contrary to

popular belief, subjectivists clearly believe in the existence of infinite limiting

relative frequencies – at least to the extent that they are willing to talk about

an (admittedly hypothetical) infinite sequence of trials.2 The existence of

such limiting frequencies follows as a purely mathematical consequence of

the assumption of exchangeability.3 When an extreme subjectivist such as

de Finetti denies the existence of objective chance or physical probability,

what is really being disputed is whether limiting frequencies are objective or

physical properties.

There are several grounds for such a position, but all center around the

question of what “object” an objective probability is a property of. Surely not

the infinite sequence, for that is merely a convenient fiction (Jeffrey 1977).

Currently the most fashionable stance seems to be that objective probabili-

ties are a dispositional property or propensity which manifests itself in, and

may be measured with ever-increasing accuracy by, finite sequences of ever-

increasing length (e.g., Kyburg 1974).

But again, a property of what? Not the coin, inasmuch as some people

can toss a so-called fair coin so that it lands heads 60% of the time or even

more (provided the coin lands on a soft surface such as sand rather than a hard

surface where it can bounce). Some philosophers attempt to evade this type of

difficulty by ascribing propensities to a chance set-up (e.g., Hacking 1965):

in the case of coin-tossing, the coin and the manner in which it is tossed.

But if the coin were indeed tossed in an identical manner on every trial, it

would always come up heads or always come up tails; it is precisely because

the manner in which the coin is tossed on each trial is not identical that the

coin can come up both ways. The suggested chance set-up is in fact nothing

other than a sequence of objectively differing trials which we are subjectively
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unable to distinguish between. At best, the infinite limiting frequency is a

property of an “object” enjoying both objective and subjective features.

2. de finetti vanquishes hume

The most important philosophical consequence of the de Finetti representation

theorem is that it leads to a solution to Hume’s problem of induction: why

should one expect the future to resemble the past? In the coin-tossing situation,

this reduces to: in a long sequence of tosses, if a coin comes up heads with

a certain frequency, why are we justified in believing that in future tosses of

the same coin, it will again come up heads (approximately) the same fraction

of the time?

De Finetti’s answer to this question is remarkably simple. Given the infor-

mation that in n tosses a coin came up heads k times, such data is incorporated

into one’s probability function via

Bayes’s rule of conditioning: P[A |B] = P[A and B]/P[B].

If n is large and p∗ = k/n, then – except for certain highly opinionated,

eccentric, or downright kinky “priors” dµ – it is easy to prove that the resulting

posterior probability distribution on p will be highly peaked about p∗; that

is, the resulting probability distribution for the sequence of coin tosses looks

approximately like (in a sense that can be made mathematically precise)

a sequence of independent and identically distributed Bernoulli trials with

parameter p∗ (i.e., independent tosses of a p∗ coin). By the weak law of large

numbers it follows that, with high probability, subsequent tosses of the coin

will result in a relative frequency of heads very close to p∗.

Let us critically examine this argument. Mathematically it is, of course,

unassailable. It implicitly contains, however, several key suppositions:

1. P is operationally defined in terms of betting odds.

2. P satisfies the axioms of mathematical probability.

3. P is modified upon the receipt of new information by Bayesian condi-

tioning.

4. P is assumed to be exchangeable.

In de Finetti’s system, degree of belief is quantified by the betting odds one

assigns to an event. By a Dutch book or coherence argument, one deduces

that these betting odds should be consistent with the axioms of mathematical

probability. Conditional probabilities are initially defined in terms of condi-

tional bets and Bayes’s rule of conditioning is deduced as a consequence of

coherence. The relevance of conditional probabilities to inductive inference

5

www.cambridge.org/9780521444705
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-44470-5 — Symmetry and its Discontents
Essays on the History of Inductive Probability
S. L. Zabell
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

is the dynamic assumption of Bayesianism (Hacking 1967): if one learns that

B has occurred, then one’s new probability assignment is P[A |B]. In general,

however, conditional probabilities can behave in very nonHumeian ways, and

(infinite) exchangeability is taken as describing the special class of situations

in which Humeian induction is appropriate.

This paper will largely concern itself with the validity of this last assump-

tion. Suffice it to say that, like Ramsey (1926), one may view the subjec-

tivist interpretation as simply capturing one of the many possible meanings

or useages of probability; that the Dutch book and other derivations of the

axioms may be regarded as plausibility arguments (rather than normatively

compelling); and that although a substantial literature has emerged in recent

decades concerning the limitations of Bayesian conditioning, the difficulties

discussed and limitations raised in that literature do not seem particularly ap-

plicable to most of the situations typically envisaged in discussions of Hume’s

problem.

The assumption of exchangeability, however, seems more immediately

vulnerable. Isn’t it essentially circular, in effect assuming what one wishes

to prove? Of course, in one sense this must obviously be the case. All math-

ematics is essentially tautologous, and any implication is contained in its

premises. Nevertheless, mathematics has its uses. Formal logic and subjective

probability are both theories of consistency, enabling us to translate certain

assumptions into others more readily palatable.

What de Finetti’s argument really comes down to is this: if future outcomes

are viewed as exchangeable, i.e., no one pattern is viewed as any more or less

likely than any other (with the same number of successes), then when an event

occurs with a certain frequency in an initial segment of the future, we must, if

we are to be consistent, think it likely that that event will occur with approx-

imately the same frequency in later trials. Conversely, if we do not accept

this, it means that we must have – prospectively – thought certain patterns

more likely than others. Which means that we must have possessed more

information than is ordinarily posited in discussions of Humeian induction.

And there the matter would appear to stand. Or does it?

3. the insidious assumption of symmetry

Exchangeability is one of many instances of the use of symmetry arguments

to be found throughout the historical development of mathematical proba-

bility and inductive logic. But while such arguments often have a seductive

attraction, they also often carry with them “hidden baggage”: implications
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or consequences, sometimes far from obvious, which later cast serious doubt

on their validity. We will discuss three historically important examples, all

involving attempts to justify induction by the use of probability theory, and

all (in effect) involving the appropriate choice of prior dµ in the de Finetti

representation.

Example 3.1. Bayes’s argument for the Bayes–Laplace prior.

Consider “an event concerning the probability of which we absolutely know

nothing antecedently to any trials made concerning it” (Bayes 1764). Implic-

itly invoking a symmetry argument, Bayes argued that “concerning such an

event I have no reason to think that, in a certain number of trials, it should

rather happen any one possible number of times than another,” i.e., that in a

sequence of n trials one’s probability assignment for Sn , the number of heads,

should satisfy

Bayes’s Postulate: P[Sn = k] = 1/(n + 1).

That is, the number of heads can assume any of the n + 1 values

0, 1, 2, . . . , n and, absent further information, all n + 1 values are viewed

as equally likely. In a famous Scholium, Bayes concluded that if this were

indeed the case, then the prior probability dµ(p) must be the “flat” prior dp.4

Although Bayes’s exact reasoning at this point is somewhat unclear, it can

easily be made rigorous: Taking k = n in the de Finetti representation and

using Bayes’s postulate, it follows that

∫ 1

0

pndµ(p) = 1/(n + 1).

The integral on the left-hand side is the n-th moment of dµ, so Bayes’s assump-

tion uniquely determines the moments of dµ. But since dµ is concentrated on

a compact set, it follows by a theorem of Hausdorff that dµ, if it exists, is in

turn determined by its moments. That is, there can be at most one probability

measure dµ which satisfies Bayes’s assumption P[Sn = k] = 1/(n + 1). But

the flat measure dp does satisfy this integral equation, i.e.,

∫ 1

0

pndp = 1/(n + 1),

hence dµ must be dp.

Bayes’s argument is quite attractive. A modern-day subjectivist might view

Bayes’s assumption as a definition (possibly one of many) of “complete
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ignorance” (rather than consider “complete ignorance” to be an a priori

meaningful concept), but would probably find Bayes’s argument otherwise

unobjectionable.

The argument in its original form, however, did not go uncriticized. As

Boole (1854, pp. 369–375) noted, rather than consider the events [Sn = k] to

be equally likely, one could equally plausibly take all sequences of a fixed

length (or “constitutions”) to be so. Thus, for n = 3

P[000] = P[100] = P[010] = P[001] = P[110]

= P[101] = P[011] = P[111] = 1/8.

To many, this assignment seemed a far more natural way of quantifying ig-

norance than Bayes’s.

Unfortunately, it contains a time-bomb with a very short fuse. As Carnap

(1950, p. 565) later noted (and Boole himself had already remarked), this

probability assignment corresponds to independent trials, and thus remains

unchanged when conditioned on the past, an obviously unsatisfactory choice

for modeling inductive inference, inasmuch as “past experience does not in

this case affect future expectation” (Boole 1854, p. 372).

In his Logical Foundations of Probability (1950), Carnap announced that

in a later volume, “a quantitative system of inductive logic” would be con-

structed, based upon a function Carnap denoted c∗. Carnap’s c∗ function was,

in effect, the one already proposed by Bayes. But Carnap grew uneasy with this

unique choice, and in his monograph The Continuum of Inductive Methods

(1952), he advocated instead the use of a one-parameter family containing c∗.

Unknown to Carnap, however, he had been anticipated in this, almost a quarter

of a century earlier, by the English philosopher William Ernest Johnson.

Example 3.2. W. E. Johnson’s sufficientness postulate.

In 1924 Johnson, a Cambridge logician, proposed a multinomial generaliza-

tion of Bayes’s postulate. Suppose there are t ≥ 2 categories or types, and

in n trials there are n1 outcomes of the first type, n2 outcomes of the second

type, . . . , and nt outcomes of the t-th type, so that n = n1 + n2 + · · · + nt .

The sequence (n1, n2, . . . , nt ) is termed an ordered t-partition of n. Bayes

had considered the case t = 2, and his postulate is equivalent to assuming that

all ordered 2-partitions (k, n – k) are equally likely. Now Johnson proposed

as its generalization

Johnson’s combination postulate: Every ordered t-partition of n is equally

likely.
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For example, if t = 3 and n = 4, then there are 15 possible ordered 3-partitions

of 4, viz.:

n1 n2 n3

4 0 0

3 1 0

3 0 1

2 2 0

2 1 1

2 0 2

1 3 0

1 2 1

1 1 2

1 0 3

0 4 0

0 3 1

0 2 2

0 1 3

0 0 4

and each of these is assumed to be equally likely.

Johnson did not work with integral representations but, like Carnap, with

finite sequences. In so doing he introduced a second postulate, his “permuta-

tion postulate.” This was none other than the assumption of exchangeability,

thus anticipating de Finetti (1931) by almost a decade! (If one labels the types

or categories with the letters of a t-letter alphabet, exchangeability here means

that all words of the same length, containing the same number of letters of

each type, are equally likely). Together, the combination and permutation pos-

tulates uniquely determine the probability of any specific finite sequence. For

example, if one considers the fifth partition in the table above, 4 = 2 + 1 + 1,

then there are twelve sequences which give rise to such a partition, viz.

x1 x2 x3 x4

1 1 2 3

1 1 3 2

1 2 1 3

1 2 3 1

1 3 1 2

1 3 2 1

2 1 1 3

2 1 3 1

2 3 1 1

3 1 1 2

3 1 2 1

3 2 1 1
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and each of these are thus assumed to have probability (1/15)(1/12) = 1/180.

The resulting probability assignment on finite sequences is identical with

Carnap’s c∗.

Despite its mathematical elegance, Johnson’s “combination postulate” is

obviously arbitrary, and Johnson was later led to substitute for it another, more

plausible one, his “sufficientness postulate.” This new postulate assumes for

all n

Johnson’s sufficientness postulate:

P[Xn+1 = j |X1 = i1, X2 = i2, . . . , Xn = in] = f (n j , n).

That is, the conditional probability that the next outcome is of type j depends

only on the number of previous trials and the number of previous outcomes

of type j, but not on the frequencies of the other types or the specific trials on

which they occurred. If, for example t = 3, n = 10, and n1 = 4, the postulate

asserts that on trial 11 the (conditional) probability of obtaining a 1 is the same

for all sequences containing four 1’s and 6 not –1’s, and that this conditional

probability does not depend on whether there were six 2’s and no 3’s, or five

2’s and one 3, and so on. (Note that the postulate implicitly assumes that all

finite sequences have positive probability, so that the conditional probabilities

are well-defined.)

Johnson’s sufficientness postulate makes what seems a minimal assump-

tion: absence of knowledge about different types is interpreted to mean that

information about the frequency of one type conveys no information about the

likelihood of other types occurring. It is therefore rather surprising that it fol-

lows from the postulate that the probability function P is uniquely determined

up to a constant:

Theorem (Johnson 1932). If P satisfies the sufficientness postulate and t ≥ 3,

then either the outcomes are independent or there exists a k > 0 such that

f (ni , n) = {ni + k}/{n + tk}.

This is, of course, nothing other than Carnap’s “continuum of inductive

methods.”5

The de Finetti representation theorem can be generalized to a much wider

class of infinite sequences of random variables than those taking on just

two values (e.g., Hewitt and Savage 1955). In the multinomial case now

being discussed, the de Finetti representation states that every exchangeable

probability can be written as a mixture of multinomial probabilities. Just as

Bayes’s postulate implied that the prior dµ in the de Finetti representation

was the flat prior, Johnson’s theorem implies that the mixing measure dµ in
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the de Finetti representation is the symmetric Dirichlet prior

�(tk)/�(k)t pk−1
1 pk−1

2 . . . pk−1
1 dp1dp2 . . . dpt−1:

a truly remarkable result, providing a subjectivistic justification for the use of

the mathematically attractive Dirichlet prior.6

Despite its surface plausibility, Johnson’s sufficientness postulate is often

too strong an assumption. While engaged in cryptanalytic work for the British

government at Bletchley Park during World War II, the English logician Alan

Turing realized that even if one lacks specific knowledge about individual

category types, the frequencies n1, n2, . . . , nt may contain relevant informa-

tion about predictive probabilities, namely the information contained in the

frequencies of the frequencies.

Let ar = the number of frequencies ni equal to r; ar is called the frequency

of the frequency r. For example, if t = 4, n = 10, and one observes the se-

quence 4241121442, then n1 = 3, n2 = 3, n3 = 0, n4 = 4 and a0 = 1, a1 =

0, a2 = 0, a3 = 2, a4 = 1. (A convenient shorthand for this is 0110203241.)

Although it is far from obvious, the ar may be used to estimate cell

probabilities: see Good (1965, p. 68).7

Example 3.3. Exchangeability and partial exchangeability.

Given the failure of such attempts, de Finetti’s program must be seen as a

further retreat from the program of attempting to provide a unique, quantitative

account of induction. Just as Johnson’s sufficientness postulate broadened

the class of inductive probabilities from that generated by the Bayes–Laplace

prior to the continuum generated by the symmetric Dirichlet priors, so de

Finetti extended the class of possible inductive probabilities even further to

include any exchangeable probability assignment.

But what of the symmetry assumption of exchangeability? Even this is not

immune to criticism (as de Finetti himself recognized). Consider the following

sequence: 000101001010100010101001. . . . Scrutiny of the sequence reveals

the interesting feature that although every 0 is followed by a 0 or 1, every

1 is invariably followed by a 0. If this feature were observed to persist over

a long segment of the sequence (or simply that 1’s were followed by 0’s

with high frequency), then this would seem relevant information that should

be taken into account when calculating conditional, predictive probabilities.

Unfortunately, exchangeable probabilities are useless for such purposes: if P

is exchangeable, then the conditional probabilities

P[Xn+1 = j |X1 = i1, X2 = i2, . . . , Xn = in]
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