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The pinch technique at one loop

In this chapter, we present in detail the pinch technique (PT) construction at one
loop for a QCD-like theory, where there is no tree-level symmetry breaking (no
Higgs mechanism). The analysis applies to any gauge group (SU (N), exceptional
groups, etc.); however, for concreteness, we will adopt the QCD terminology of
quarks and gluons.

This introductory chapter and Chapter 2 go into both conventional technology
and the pinch technique only at the one-loop level. Here, the reader will find an
almost self-contained guide to the one-loop pinch technique with many calcula-
tional details plus some hints at the nonperturbative ideas used in later chapters
(where nonperturbative effects will be studied by dressing the loops, i.e., using a
skeleton expansion).

1.1 A brief history

Non-Abelian gauge theories (NAGTs) had been around for a long time when the
pinch technique came into play [1, 2, 3, 4]. Their first use was in defining the one-
loop PT gauge-boson propagator as a construct taken from some gauge-invariant
object by combining parts of conventional Feynman graphs while preserving gauge
invariance and other physical properties. The term pinch technique was introduced
later [4], in a paper that extended the one-loop pinch technique to the three-gluon
vertex. The name comes from a characteristic feature of the pinch technique, in
which the needed parts of some Feynman graphs look as though a particular propa-
gator line had been pinched out of existence. In all these early papers, only one-loop
phenomena were studied, including a one-dressed-loop Schwinger–Dyson equation
for the PT propagator. This equation showed how the infrared singularities arising
because of asymptotic freedom (= infrared slavery) require dynamical gluon mass
generation. Of course, the pinch technique should lead to unique results. These
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2 The pinch technique at one loop

considerations followed from five requirements for all PT Green’s functions not
involving ghosts:

1. All Green’s functions are independent of any gauge-fixing parameters.
2. All Green’s functions are independent of the particular S-matrix process

used to define them.
3. All Green’s functions obey Ward identities of QED type, not involving

ghosts.
4. All Green’s functions obey dispersion relations in which there are no iden-

tifiable ghost contributions or threshholds.
5. The discontinuities (imaginary parts) of Green’s functions can be calculated

with the usual Cutkosky rules, consistent with unitarity for the S-matrix.

All these are properties of Green’s functions in the background-field Feynman
gauge, later shown to be equivalent to the pinch technique.

One remark concerning the imaginary parts and unitarity is in order. The pho-
ton propagator of QED satisfies a Källen–Lehmann representation with a positive
spectral function, a property intimately related to the positivity of the beta func-
tion of QED. Because this beta function is negative for an asymptotically free
theory, it is impossible to find a NAGT gauge-boson propagator with a positive
spectral function, so unitarity holds in a generalized form, with some negative
contributions to spectral functions. However, as pointed out in Section 1.7, special
properties of the PT propagator allow its factorization into two terms, each obeying
the Källen–Lehmann representation.1 This factorization allows the rearrangement
of PT Schwinger–Dyson equations into a form in which all necessary positivity
constraints are realized.

At the beginning, how to extend the pinch technique to higher orders of pertur-
bation theory was far from clear; the pioneering technology defined in the first
papers would have been forbiddingly difficult for graphs with two or more loops.
Fortunately, the problem of the all-order pinch technique has a solution that can
be stated with remarkable simplicity: all that has to be done, as was shown [5, 6],
is to calculate conventional Feynman graphs using the background-field method-
ology [7] in the Feynman gauge. The original proof was for NAGTs such as
QCD, but it was extended [8] to all orders of electroweak theory. This work was
inspired by remarks [9, 10, 11] to the effect that the original pinch technique and
the background-field Feynman gauge gave exactly the same results at one loop in
perturbation theory. This, of course, could have been a coincidence without much

1 The product of two functions obeying the Källen–Lehmann representation need not obey it.
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1.2 Notation and conventions 3

meaning, but the all-order proof showed constructively how the PT requirements
were satisfied at all orders in the background-field Feynman gauge.2

In roughly the same time period, string-theory workers [12] studied the off-shell
extrapolation of string-theory amplitudes in the field theory, or zero Regge slope,
limit. By imposing a consistent implementation of modular invariance, these work-
ers showed that the off-shell gauge-theory amplitudes derived from string theory
were automatically given in the background-field Feynman gauge–equivalent to
the pinch technique.

The results showing the equivalence of the pinch technique and the background-
field Feynman gauge set the stage for nonperturbative applications of the pinch
technique, including the Schwinger–Dyson equations of the pinch technique and
their consequences. The output of any PT calculation is not only independence of
any gauge-fixing parameter but also freedom from contamination by unphysical
objects. For example, if one tries to find the contributions of gauge-invariant con-
densates such as 〈Tr GµνG

µν〉 to the usual gauge-boson propagator, one discovers
that they are inextricably bound with nonphysical and gauge-dependent conden-
sates involving the ghost fields. But for the PT propagator, only the gauge-invariant
condensate, field-strength condensate emerges; there are no ghost contributions
[13].

1.2 Notation and conventions

Unless explicitly stated otherwise, we adopt the conventions of Peskin and
Schröeder [14]. Sometimes, such as in Chapters 7–9 and parts of Chapter 11,
it is convenient to work in Euclidean space. The canonical gauge potential Aa

µ(x)
is often combined in the Hermitian matrix form

Aµ(x) = Aa
µ(x)ta, (1.1)

where ta are the SU (N) generators satisfying the commutation relations

[ta, tb] = if abctc, (1.2)

with f abc being the group’s totally antisymmetric structure constants. The genera-
tors are normalized according to

Tr(tatb) = 1

2
δab. (1.3)

In the case of QCD, the fundamental representation is given by ta = λa/2, where
λa are the Gell–Mann matrices.

2 And in no other background-field gauge; for other than the Feynman gauge, the original PT pinching rules
would have to be applied to the background-field Green’s functions to get those of the PT.
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4 The pinch technique at one loop

In Chapters 7, 8, and 9, dealing with nonperturbative phenomena, we combine the
gauge potentials in the anti-Hermitean matrix form

Aµ(x) = −igAa
µ(x)ta,

in which case the matrix potential has a unit mass dimension in all space-time
dimensions. The changes in all other definitions are trivial. This definition has
many advantages when we go beyond perturbation theory.

The Lagrangian density for a general SU (N) non-Abelian gauge theory is given
by

L = LI + LGF + LFPG. (1.4)

LI represents the gauge invariant Lagrangian, namely,

LI = −1

4
Gµν

a Ga
µν + ψ̄ i

f

(
iγ µDµ − m

)
ij

ψ
j

f , (1.5)

where a = 1, . . . , N2 − 1 (respectively, i, j = 1, . . . , N) is the color index for the
adjoint (respectively, fundamental) representation, and f is the flavor index. The
matrix-covariant derivative and field strength are defined according to

Dµ = ∂µ − igAµ (1.6)[
Dµ,Dν

] = −igGa
µνt

a, (1.7)

or, more explicitly,

(Dµ)ij = ∂µ(I )ij − igAa
µ(ta)ij (1.8)

Ga
µν = ∂µAa

ν − ∂νA
a
µ + gf abcAb

µAc
ν, (1.9)

with g being the (strong) coupling constant. Under a local (finite) gauge transfor-
mation V = exp[−iθ ],

Aµ → V
i

g
∂µV † + V AµV †; Gµν → V GµνV

†; ψ → V ψ, (1.10)

from which the invariance of LI follows. In terms of infinitesimal local gauge
transformations,

δAa
µ = −1

g
∂µθa + f abcθbAc

µ; δθψ
i
f = −iθa(ta)ijψ

j

f

δθ ψ̄
i
f = iθaψ̄

j

f (ta)j i, (1.11)

where θa(x) are the local infinitesimal parameters corresponding to the SU (N)
generators ta .
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1.2 Notation and conventions 5

To quantize the theory, the gauge invariance needs to be broken; this breakup is
achieved through a (covariant) gauge-fixing function Fa , giving rise to the (covari-
ant) gauge-fixing Lagrangian LGF and its associated Faddeev–Popov ghost term
LFPG. The most general way of writing these terms is through the Becchi–Rouet–
Stora–Tyutin (BRST) operator s [15, 16] and the Nakanishi–Lautrup multipliers
Ba [17, 18], which represent auxiliary, nondynamical fields that can be eliminated
through their (trivial) equations of motion. Then, one gets

LGF = −ξ

2
(Ba)2 + BaFa (1.12)

LFPG = −c̄asFa, (1.13)

where

δBRST	 = εs	, (1.14)

with ε being a Grassmann constant parameter and s being the BRST operator acting
on the QCD fields according to

sAa
µ = ∂µca + gf abcAb

µcc; sca = − 1
2gf

abccbcc

sψi
f = igca(ta)ijψ

j

f ; sc̄a = Ba

sψ̄i
f = −igcaψ̄

j

f (ta)j i ; sBa = 0. (1.15)

From the preceding transformations, it is easy to show that the BRST operator is
nilpotent: s2 = 0. In addition, as a result, the sum of the gauge-fixing and Faddev–
Popov terms can be written as a total BRST variation:

LGF + LFPG = s

(
c̄aFa − ξ

2
c̄aBa

)
. (1.16)

This, of course, is expected because of the well-known property that total BRST
variations cannot appear in the physical spectrum of the theory, which in turn
implies the ξ independence of the S-matrix elements and physical observables.

As far as the gauge-fixing function is concerned, there are several possible choices.
The ubiquitous Rξ gauges correspond to the covariant choice

Fa
Rξ

= ∂µAa
µ. (1.17)

In this case, one has

LGF = 1

2ξ
(∂µAa

µ)2 (1.18)

LFPG = ∂µc̄a∂µca + gf abc(∂µc̄a)Ab
µcc; (1.19)
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6 The pinch technique at one loop

the Feynman rules corresponding to such a gauge are reported in the appendix.
One can also consider noncovariant gauge-fixing functions such as

Fa
n = nµnν

n2
∂µAa

ν, (1.20)

where nµ is an arbitrary but constant four vector. In general, we can classify these
gauges by the different values of n2, i.e., n2 < 0 (axial gauges), n2 = 0 (light-cone
gauge), and finally, n2 > 0 (Hamilton or time-like gauge). Clearly, the gauge-fixing
form of Eq. (1.20) does not work for the light-cone gauge, which needs a separate
treatment, given in Section 1.6. In the other cases,

LGF = 1

2ξ (n2)2
(nµnν∂µAa

ν)2 (1.21)

LFPG = nµnν

n2

[
∂µc̄a∂νc

a + gf abc(∂µc̄a)Ab
νc

c
]
. (1.22)

Notice that these noncovariant gauges, as well as the light-cone gauge, are ghost
free because the ghosts decouple completely from the S-matrix in dimensional
regularization.

Finally, because of the correspondence [9, 10, 11] between the PT and the particular
class of gauges known as background field gauges [7], the latter will be described
in depth in Chapter 2.

We end this section observing that when dealing with loop integrals, we will use
dimensional regularization and employ the shorthand notation

∫
k

≡ µε(2π )−d

∫
ddk, (1.23)

where d = 4 − ε is the dimension of space-time and µ is the ’t Hooft mass scale,
introduced to guarantee that the coupling constant is dimensionless in d dimensions.
In addition, the standard result, ∫

k

1

k2
= 0, (1.24)

will be used often to set various terms appearing in the PT procedure to zero.

1.3 The basic one-loop pinch technique

We begin with some notation for propagators and a special decomposition for the
free three-gluon vertex, a decomposition that also occurs in the background-field
method.
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1.3 The basic one-loop pinch technique 7

1.3.1 Origin of the longitudinal momenta

Consider the S-matrix element for the quark-quark elastic scattering process
q(p1)q(r1) → q(p2)q(r2) in QCD. We have that p1 + r1 = p2 + r2 and set q =
r2 − r1 = p1 − p2, with s = q2 being the square of the momentum transfer. The
longitudinal momenta responsible for triggering the kinematical re-arrangements
characteristic of the pinch technique stem either from the bare gluon propagator
�

(0)
αβ(k) or from the external bare (tree-level) three-gluon vertices, i.e., the vertices

where the physical momentum transfer q is entering.

To study the origin of the longitudinal momenta in detail, first consider the gluon
propagator �αβ(k); after factoring out the trivial color factor δab, in the Rξ gauges,
it takes the form

i�αβ(q, ξ ) = Pαβ(q)�(q2, ξ ) + ξ
qαqβ

q4
, (1.25)

with Pαβ(q) being the dimensionless transverse projector, defined as

Pαβ(q) = gαβ − qαqβ

q2
. (1.26)

The scalar function �(q2, ξ ) is related to the all-order gluon, self-energy

�αβ(q, ξ ) = Pαβ(q)�(q2, ξ ), (1.27)

through

�(q2, ξ ) = 1

q2 + i�(q2, ξ )
. (1.28)

Because �αβ has been defined in Eq. (1.28) with the imaginary factor i factored out
in front, it is simply given by the corresponding Feynman diagrams in Minkowski
space. The inverse of �αβ can be found by requiring that

�am
αµ(q, ξ )(�−1)µβ

mb(q, ξ ) = δabgβ
α , (1.29)

and it is given by

−i�−1
αβ (q, ξ ) = Pαβ(q)�−1(q2, ξ ) + 1

ξ
qαqβ. (1.30)

At tree level,

i�(0)
αβ(q, ξ ) = d(q2)

[
gαβ − (1 − ξ )

qαqβ

q2

]
(1.31)

d(q2) = 1

q2
. (1.32)
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8 The pinch technique at one loop

Evidently, the longitudinal (pinching) momenta are proportional to the combination
λ = 1 − ξ and vanish for the particular choice ξ = 1 (Feynman gauge) so that the
free propagator is simply proportional to gαβd(q2). This is a particularly important
feature of the Feynman gauge, which, as we will see, makes PT computations much
easier. In this gauge, only longitudinal momenta from vertices can contribute to
pinching at the one-loop level. The popular case ξ = 0 (Landau gauge) gives rise
to a transverse �

(0)
αβ(k), which may have its advantages but really complicates the

PT procedure at this level.

Next, we consider the conventional three-gluon vertex, to be denoted by
�amn

αµν (q, k1, k2), given by the following manifestly Bose-symmetric expression (all
momenta are incoming, i.e., q + k1 + k2 = 0):

i�amn
αµν (q, k1, k2) = gf amn�αµν(q, k1, k2) (1.33)

�αµν(q, k1, k2) = gµν(k1 − k2)α + gαν(k2 − q)µ + gαµ(q − k1)ν.

This vertex satisfies the standard Ward identities:

qα�αµν(q, k1, k2) = k2
2Pµν(k2) − k2

1Pµν(k1) (1.34)

k
µ

1 �αµν(q, k1, k2) = q2Pαν(q) − k2
2Pαν(k2) (1.35)

kν
2�αµν(q, k1, k2) = k2

1Pαµ(k1) − q2Pαµ(q). (1.36)

Unfortunately, the right-hand side is not the difference of inverse propagators, a
defect that shows up in higher orders as the appearance of ghost terms in the
identities, now called the Slavnov–Taylor identities.

But it is possible to decompose the vertex in a special way into two pieces, one
of which satisfies a Ward identity of an elementary (ghost-free) type and the other
contains the only longitudinal momenta capable of generating pinches [1, 19]. In
the general ξ gauge, this decomposition, as applied to the vertex of Figure 1.1(b),
is

�µνα(q, k1, k2) = �ξ
µνα + �Pξ

µνα, (1.37)

where

�ξ
µνα(q, k1, k2) = (k1 − k2)αgµν − 2qµgνα + 2qνgµα

+
(

1 − 1

ξ

)
[k2νgαµ − k1µgαν], (1.38)

and

�Pξ
µνα(q, k1, k2) = 1

ξ
[k2νgαµ − k1µgαν]. (1.39)
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1.3 The basic one-loop pinch technique 9

(a) (c)

(e)

(b)

(d)

Figure 1.1. The diagrams contributing to the one-loop quark elastic scattering
S-matrix element. (a) box contributions, (b) non-Abelian and (c) Abelian vertex
contributions (two similar diagrams omitted), (d) quark self-energy corrections
(three similar diagrams omitted), and (e) gluon self-energy contributions.

It is easy to check that �ξ obeys the elementary Ward identity:

qα�ξ
µνα(q, k1, k2) = �−1

µν (k2, ξ ) − �−1
µν (k1, ξ ), (1.40)

and that �Pξ is the only part of the vertex that triggers pinches. In the pinch
technique, (a trivial modification of) this ghost-free Ward identity holds to all
orders and has, as a consequence, as in QED, the equality of the gluon wave
function and vertex renormalization constants – a relation of great importance for
further developments. Note that the vertex �ξ

αµν(q, k1, k2) is Bose symmetric only
with respect to the µ and ν legs. Evidently, the preceding decomposition assigns a
special role to the q-leg, which is attached to two on-shell lines. In fact, this vertex
�ξ also occurs in the background-field method (see the appendix).3

It would be possible to carry out the (one-loop) PT manipulations with this vertex
decomposition for any ξ , but, just as for the propagator, things simplify in the
Feynman gauge, where a substantial part of �ξ vanishes. Because we will use this
gauge extensively, we record its vertex decomposition using the notation �F =
�ξ=1, �Pξ=1 = �P. Then,

�αµν(q, k1, k2) = �F
αµν(q, k1, k2) + �P

αµν(q, k1, k2), (1.41)

3 Actually, in both the pinch technique and the background-field method, there are two kinds of vertices; at the
one-loop level, only the one used here matters.
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10 The pinch technique at one loop

with

�F
αµν(q, k1, k2) = (k1 − k2)αgµν + 2qνgαµ − 2qµgαν, (1.42)

�P
αµν(q, k1, k2) = k2νgαµ − k1µgαν, (1.43)

and this allows �F
αµν(q, k1, k2) to satisfy the Ward identity

qα�F
αµν(q, k1, k2) = (k2

2 − k2
1)gµν, (1.44)

where the right-hand side is the difference of two inverse propagators in the
Feynman gauge.

1.3.2 The basic pinch operation

The term pinch arises from the operation of longitudinal momenta, such as in �P, on
vertices, which triggers Ward identities that lead to the cancellation of a preexisting
propagator by an inverse propagator coming from the Ward identity. The resulting
graph looks like a Feynman graph from which one line has been removed, as if it
had been pinched out.

Whether acting on a vertex or a box diagram, as in Figure 1.1, the effect of the
pinching momenta, regardless of their origin (gluon propagator or three-gluon
vertex), is to trigger the elementary Ward identity

kνγ
ν = (/k + /p − m) − (/p − m), (1.45)

where the right-hand side (rhs) is the difference of two inverse tree-level quark
propagators. The first of these terms cancels (pinches out) the internal tree-level
fermion propagator S(0)(k + p), and the second term on the rhs vanishes when
hitting the on-shell external leg. Diagrammatically speaking, an unphysical effec-
tive vertex appears in the place where S(0)(k + p) was, i.e., a vertex that does not
appear in the original Lagrangian; as we will see, all such vertices cancel in the
full, gauge-invariant amplitude.

First of all, it is immediate to verify the cancellation of the ξ -dependent terms at
tree level. After extracting a kinematic factor of the form

iVaα(p1, p2) = ū(p1)igtaγ αu(p2), (1.46)

the tree-level amplitude reads

T (0) = iVaα(r1, r2)i�(0)
αβ(q)iVaβ(p1, p2). (1.47)

Then, because the on-shell spinors satisfy the equations of motion

ū(p)(/p − m) = 0 = (/p − m)u(p), (1.48)
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