Contents

Plan of the Two-Volume Edition

Preface to the Second Edition

Preface to the First Edition

License Information

Computer Programs by Chapter and Section

1 Preliminaries

1.0 Introduction

1.1 Program Organization and Control Structures

1.2 Error, Accuracy, and Stability

2 Solution of Linear Algebraic Equations

2.0 Introduction

2.1 Gauss-Jordan Elimination

2.2 Gaussian Elimination with Backsubstitution

2.3 LU Decomposition and Its Applications

2.4 Tridiagonal and Band Diagonal Systems of Equations

2.5 Iterative Improvement of a Solution to Linear Equations

2.6 Singular Value Decomposition

2.7 Sparse Linear Systems

2.8 Vandermonde Matrices and Toeplitz Matrices

2.9 Cholesky Decomposition

2.10 QR Decomposition

2.11 Is Matrix Inversion an \(N^3 \) Process?

3 Interpolation and Extrapolation

3.0 Introduction

3.1 Polynomial Interpolation and Extrapolation

3.2 Rational Function Interpolation and Extrapolation

3.3 Cubic Spline Interpolation

3.4 How to Search an Ordered Table

3.5 Coefficients of the Interpolating Polynomial

3.6 Interpolation in Two or More Dimensions
Table of Contents

4 Integration of Functions

4.0 Introduction 123
4.1 Classical Formulas for Equally Spaced Abscissas 124
4.2 Elementary Algorithms 130
4.3 Romberg Integration 134
4.4 Improper Integrals 135
4.5 Gaussian Quadratures and Orthogonal Polynomials 140
4.6 Multidimensional Integrals 155

5 Evaluation of Functions

5.0 Introduction 159
5.1 Series and Their Convergence 159
5.2 Evaluation of Continued Fractions 163
5.3 Polynomials and Rational Functions 167
5.4 Complex Arithmetic 171
5.5 Recurrence Relations and Clenshaw’s Recurrence Formula 172
5.6 Quadratic and Cubic Equations 178
5.7 Numerical Derivatives 180
5.8 Chebyshev Approximation 184
5.9 Derivatives or Integrals of a Chebyshev-approximated Function 189
5.10 Polynomial Approximation from Chebyshev Coefficients 191
5.11 Economization of Power Series 192
5.12 Padé Approximants 194
5.13 Rational Chebyshev Approximation 197
5.14 Evaluation of Functions by Path Integration 201

6 Special Functions

6.0 Introduction 205
6.1 Gamma Function, Beta Function, Factorials, Binomial Coefficients 206
6.2 Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function 209
6.3 Exponential Integrals 215
6.4 Incomplete Beta Function, Student’s Distribution, F-Distribution, Cumulative Binomial Distribution 219
6.5 Bessel Functions of Integer Order 223
6.6 Modified Bessel Functions of Integer Order 229
6.7 Bessel Functions of Fractional Order, Airy Functions, Spherical Bessel Functions 234
6.8 Spherical Harmonics 246
6.9 Fresnel Integrals, Cosine and Sine Integrals 248
6.10 Dawson’s Integral 252
6.11 Elliptic Integrals and Jacobian Elliptic Functions 254
6.12 Hypergeometric Functions 263

7 Random Numbers

7.0 Introduction 266
7.1 Uniform Deviates 267
Table of Contents

8 Sorting

9 Root Finding and Nonlinear Sets of Equations

10 Minimization or Maximization of Functions

11 Eigensystems
Contents

11.6 The QR Algorithm for Real Hessenberg Matrices 480
11.7 Improving Eigenvalues and/or Finding Eigenvectors by Inverse Iteration 487

12 Fast Fourier Transform 490

12.0 Introduction 490
12.1 Fourier Transform of Discretely Sampled Data 494
12.2 Fast Fourier Transform (FFT) 498
12.3 FFT of Real Functions, Sine and Cosine Transforms 504
12.4 FFT in Two or More Dimensions 515
12.5 Fourier Transforms of Real Data in Two and Three Dimensions 519
12.6 External Storage or Memory-Local FFTs 525

13 Fourier and Spectral Applications 530

13.0 Introduction 530
13.1 Convolution and Deconvolution Using the FFT 531
13.2 Correlation and Autocorrelation Using the FFT 538
13.3 Optimal (Wiener) Filtering with the FFT 539
13.4 Power Spectrum Estimation Using the FFT 542
13.5 Digital Filtering in the Time Domain 551
13.6 Linear Prediction and Linear Predictive Coding 557
13.7 Power Spectrum Estimation by the Maximum Entropy (All Poles) Method 565
13.8 Spectral Analysis of Unevenly Sampled Data 569
13.9 Computing Fourier Integrals Using the FFT 577
13.10 Wavelet Transforms 584
13.11 Numerical Use of the Sampling Theorem 600

14 Statistical Description of Data 603

14.0 Introduction 603
14.1 Moments of a Distribution: Mean, Variance, Skewness, and So Forth 604
14.2 Do Two Distributions Have the Same Means or Variances? 609
14.3 Are Two Distributions Different? 614
14.4 Contingency Table Analysis of Two Distributions 622
14.5 Linear Correlation 630
14.6 Nonparametric or Rank Correlation 633
14.7 Do Two-Dimensional Distributions Differ? 640
14.8 Savitzky-Golay Smoothing Filters 644

15 Modeling of Data 650

15.0 Introduction 650
15.1 Least Squares as a Maximum Likelihood Estimator 651
15.2 Fitting Data to a Straight Line 655
15.3 Straight-Line Data with Errors in Both Coordinates 660
15.4 General Linear Least Squares 665
15.5 Nonlinear Models 675
Table of Contents

15.6 Confidence Limits on Estimated Model Parameters 684
15.7 Robust Estimation 694

16 Integration of Ordinary Differential Equations 701
16.0 Introduction 701
16.1 Runge-Kutta Method 704
16.2 Adaptive Stepsize Control for Runge-Kutta 708
16.3 Modified Midpoint Method 716
16.4 Richardson Extrapolation and the Bulirsch-Stoer Method 718
16.5 Second-Order Conservative Equations 726
16.6 Stiff Sets of Equations 727
16.7 Multistep, Multivariate, and Predictor-Corrector Methods 740

17 Two Point Boundary Value Problems 745
17.0 Introduction 745
17.1 The Shooting Method 749
17.2 Shooting to a Fitting Point 751
17.3 Relaxation Methods 753
17.4 A Worked Example: Spheroidal Harmonics 764
17.5 Automated Allocation of Mesh Points 774
17.6 Handling Internal Boundary Conditions or Singular Points 775

18 Integral Equations and Inverse Theory 779
18.0 Introduction 779
18.1 Fredholm Equations of the Second Kind 782
18.2 Volterra Equations 786
18.3 Integral Equations with Singular Kernels 788
18.4 Inverse Problems and the Use of A Priori Information 795
18.5 Linear Regularization Methods 799
18.6 Backus-Gilbert Method 806
18.7 Maximum Entropy Image Restoration 809

19 Partial Differential Equations 818
19.0 Introduction 818
19.1 Flux-Conservative Initial Value Problems 825
19.2 Diffusive Initial Value Problems 838
19.3 Initial Value Problems in Multidimensions 844
19.4 Fourier and Cyclic Reduction Methods for Boundary Value Problems 848
19.5 Relaxation Methods for Boundary Value Problems 854
19.6 Multigrid Methods for Boundary Value Problems 862

20 Less-Numerical Algorithms 881
20.0 Introduction 881
20.1 Diagnosing Machine Parameters 881
20.2 Gray Codes 886
Contents

20.3 Cyclic Redundancy and Other Checksums 888
20.4 Huffman Coding and Compression of Data 896
20.5 Arithmetic Coding 902
20.6 Arithmetic at Arbitrary Precision 906

References for Volume 1 916

Index of Programs and Dependencies (Vol. 1) 921

General Index to Volumes 1 and 2

Contents of Volume 2: Numerical Recipes in Fortran 90

Preface to Volume 2 viii
Foreword by Michael Metcalf x
License Information xvii

21 Introduction to Fortran 90 Language Features 935
22 Introduction to Parallel Programming 962
23 Numerical Recipes Utilities for Fortran 90 987

Fortran 90 Code Chapters 1009

B1 Preliminaries 1010
B2 Solution of Linear Algebraic Equations 1014
B3 Interpolation and Extrapolation 1043
B4 Integration of Functions 1052
B5 Evaluation of Functions 1070
B6 Special Functions 1083
B7 Random Numbers 1141
B8 Sorting 1167
B9 Root Finding and Nonlinear Sets of Equations 1182
B10 Minimization or Maximization of Functions 1201
B11 Eigensystems 1225
B12 Fast Fourier Transform 1235
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B13 Fourier and Spectral Applications</td>
<td>1253</td>
</tr>
<tr>
<td>B14 Statistical Description of Data</td>
<td>1269</td>
</tr>
<tr>
<td>B15 Modeling of Data</td>
<td>1285</td>
</tr>
<tr>
<td>B16 Integration of Ordinary Differential Equations</td>
<td>1297</td>
</tr>
<tr>
<td>B17 Two Point Boundary Value Problems</td>
<td>1314</td>
</tr>
<tr>
<td>B18 Integral Equations and Inverse Theory</td>
<td>1325</td>
</tr>
<tr>
<td>B19 Partial Differential Equations</td>
<td>1332</td>
</tr>
<tr>
<td>B20 Less-Numerical Algorithms</td>
<td>1343</td>
</tr>
</tbody>
</table>

References for Volume 2

Appendices

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 Listing of Utility Modules (nrtype and nrutil)</td>
<td>1361</td>
</tr>
<tr>
<td>C2 Listing of Explicit Interfaces</td>
<td>1384</td>
</tr>
<tr>
<td>C3 Index of Programs and Dependencies (Vol. 2)</td>
<td>1434</td>
</tr>
</tbody>
</table>

General Index to Volumes 1 and 2

1447