Mechanics of pre-industrial technology
Mechanics of pre-industrial technology

BRIAN COTTERELL
Department of Mechanical and Production Engineering
National University of Singapore

JOHAN KAMMINGA
Department of Prehistory and Anthropology
Australian National University
Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP
40 West 20th Street, New York, NY 10011-4211, USA
10 Stamford Road, Oakleigh, Victoria 3166, Australia
© Brian Cotterell and Johan Kamminga 1990
First published 1990
First paperback edition 1992

British Library catalogue in publication data
Cotterell, Brian
Mechanics of pre-industrial technology.
1. Industrial antiquities to 1750
I. Title. II. Kamminga, Johan
609

National Library of Australia catalogue in publication data
Cotterell, Brian, 1934–
Mechanics of pre-industrial technology.
Bibliography.
Includes index.
Primitive. I. Kamminga, Johan. II. Title.
620.1'009

Library of Congress catalogue in publication data
Cotterell, Brian, 1934–
Mechanics of pre-industrial technology: an introduction to the
mechanics of ancient and traditional material culture/Brian
Cotterell, Johan Kamminga.
 p. cm.
Bibliography.
Includes index.
ISBN 0 521 34194 9
I. Kamminga, Johan. II. Title.
OC125.2.068 1989
620.1'009 – dc 19 88-29238 GIP

ISBN 0 521 34194 9 hardback
ISBN 0 521 42871 8 paperback

Transferred to digital printing 2000
To Maureen and Katai
CONTENTS

List of figures x
List of tables xii
Preface xiii

1 Introduction 1
Invention and diffusion 1
Theories of cultural evolution 5
Artifact sophistication and complexity 8
The development of mechanical science 11
Mechanics of material culture 13
Methods of mechanical analysis 14
Mechanical experimentation 15
Definitions and units 16

2 Basic mechanics 18
Space and time 18
Mass 20
Force 22
The laws of motion 22
The main sources of force in pre-industrial technology 23
Muscular force 23
Gravitational force 24
Frictional force 27
Scalars and vectors 29
Acceleration 31
Work and energy 33
Power 35
Equilibrium and stability 44

3 Fluids and solids 47
Fluids 47
Concept of pressure 47
The motion of ideal fluids 50
The siphon 54
The water-wheel 56
Viscous flow 57
Water-clocks 59
Contents

Solids 64
 Stress and strength 65
 Deformation and strain 69
 Stress-strain relationships 70
 Resilience and strain energy 72

4 Machines 74
 The lever 75
 The moment of a force 77
 Lever systems of animals 80
 Lifting with a lever 80
 The beam press 83
 The balance 84
 The inclined plane 86
 The pulley 89
 The winch and capstan 93
 The screw 94
 The gear wheel 96
 The wedge 97

5 Structures 101
 Suspension bridges 102
 Column and lintel construction 104
 Beams 106
 Trusses 115
 Arches and domes 119
 Arches 119
 Domes 123

6 Stone tools 125
 The stone materials 127
 Flaked stone tools 130
 Fracture mechanics 135
 The initiation phase of flake formation 140
 The propagation phase of flake formation 142
 The termination phase of flake formation 145
 Flake surface markings 147
 Ground stone tools 151
 The mechanics of abrasion 153
 Use-wear on stone tools 155

7 Projectiles 160
 The motion of projectiles 161
 The spear 163
 The spearthrower 166
 The stability of a spear 170
 The boomerang 175
 The bow and arrow 180
 The composite bow 185
 The archer's paradox 187
 Torsion catapults 188
Contents

8 Land transport 193
 The mechanics of walking 193
 Pack transport 196
 Wheeled vehicles 197
 Friction of rollers and wheels 198
 The dished wheel 204
 Animal ability and harness 206
 The wheelbarrow 214
 Moving the colossi 216
 Lubrication 220
 Rollers 223
 Ropes 225
 Easter Island statues 226
 Classical Greece and Rome 232

9 Water transport 234
 Buoyancy 237
 Lateral stability 238
 Propulsion 245
 Oars 245
 Sails 250
 Water resistance 255
 The performance of the Trireme 257
 Steering and directional stability 259

10 Musical instruments 265
 The nature of sound 266
 The pitch and quality of a musical note 267
 Harmony and musical scales 270
 Musical instruments 276
 Chordophones, or stringed instruments 276
 Aerophones, or wind instruments 280
 Idiophones, or percussion instruments other than drums 287
 Membranophones, or drums 291
 Archaeomusicology 292

11 Epilogue 293

Appendix I Glossary of mechanical terms 296

Appendix II Symbols 305

Appendix III Useful mathematical formulas 308

References 309

Index 319
FIGURES

1.1. A Kimberley point 4
1.2. Gubu player 6
1.3. The development of material culture 9
2.1. Cartesian system of coordinates 19
2.2. Forces acting on a Scandinavian sledge 28
2.3. Vectorial addition of velocities 30
2.4. A large vessel being pulled on a sledge 30
2.5. Centripetal acceleration 32
2.6. Galileo’s pendulum 34
2.7. Relief on a Roman sarcophagus depicting horse-driven grain mills 37
2.8. Roman crane powered by a treadwheel 40
2.9. The four types of water-wheel 42
2.10. The stability of a matchbox 44
2.11. Cocking’s inverted parachute 45
3.1. Discharge through an orifice at the bottom of a tank 51
3.2. Demonstration of Bernoulli’s equation 52
3.3. Egyptians siphoning a liquid 54
3.4. A satep pouring water, an example of a siphon 55
3.5. The action of a syphon 55
3.6. Two sheared plates separated by a viscous fluid 57
3.7. Flow in a pipe 58
3.8. The Karnak water-clock 60
3.9. Dimensions of orifices suitable for the Karnak clock 62
3.10. Time as indicated by the Karnak clock 63
3.11. Accuracy of the Karnak clock 64
3.12. Stress 67
3.13. Strain 70
3.14. Work done in stretching a bar 72
4.1. The lever rule 76
4.2. The moment on a door hinge 78
4.3. Lifting a rock using the flexor muscle 80
4.4. Lifting a block with a lever 81
4.5. Traditional Chinese building method for raising heavy weights 82
4.6. An Egyptian press 83
4.7. Sensitivity of a balance 85
4.8. The inclined plane 87
4.9. Stevin’s analysis of the inclined plane 87
4.10. A sledge being hauled up a rough incline 88
4.11. A cylinder being parbuckled up an incline 89
4.12. Egyptian sweep 90
4.13. Vitruvian crane with trispast and winch 91
4.14. The effect on friction at the axle of a pulley 92
4.15. The three basic drives for a winch 94
4.16. Mechanics of the screw 95
4.17. Three practical gear trains that use pegs for teeth 96
4.18. The impact experiment of Marcus Manilius 99
5.1. Basic methods of spanning an opening 101
5.2. Cane suspension bridge over the Bramaputra River 103
5.3. Leads on a suspension bridge 104
5.4. Tomb of Agamemnon, or Treasury of Atreus, at Mycenae 105
5.5. Bending of a cantilever 107
5.6. A supported beam 108
5.7. Deformation of an elastic beam under pure bending 109
5.8. Cross-section of a ceiling beam in the Temple of Ares, Athens 111
5.9. Ceiling beam from the Heron at Samothrace 112
5.10. Idealised bending stress in a wooden beam just before fracture 112
5.11. Theoretical modulus of rupture of wood 113
5.12. Architrave of the Propylia at Athens showing iron insets 114
5.13. The prop and beam roof construction 115
5.14. Roman bridge built over the Danube 116
5.15. Palladio’s bridge over the river Cismone in northern Italy 117
5.16. Corbelled roof in a mastaba at Dahshur 119
5.17. Temple of Zeus, Athens 119
5.18. Thrust line for minimum horizontal thrust in a cracked archtrave 120
5.19. The King’s Chamber in the Great Pyramid of Giza 121
5.20. Collapse mechanism of the bridge at Pont-y-Pridd, Wales 123
6.1. An Acheulian ‘hand-axe’ from Swanscombe 125
6.2. Australian Aboriginal ground stone tool 126
6.3. Percussion flaking with a hammerstone 130
6.4. A conchoidal flake 131
6.5. A bipolar flake 132
6.6. Fine pressure flaking to make a spear point 133
6.7. A bending flake 133
6.8. The phases of flake formation 134
6.9. Pyramidal indentation and associated cracks in glass 137
6.10. A Hertzian cone formed in a nucleus of flint 140
6.11. Maximum bending stress as a function of force and edge angles 141
6.12. Crack paths obtained from controlled force angles 143
6.13. Stiffness-controlled crack propagation 144
6.14. Finials on hinge terminations 146
6.15. (a) The initial stages in the formation of an undulation; (b) The initial stages in the formation of three lances 148
6.16. Wallner lines on an obdiant blade 149
6.17. Schematic development of Wallner lines 150
6.18. Abrasive wear on glass 152
6.19. Formation of cracks under a sharp indenter 155
6.20. Use-wear on stone tools 156
7.1. Path of a projectile in a vacuum 161
7.2. Throwing on a spear 163
7.3. Throwing a spear 165
7.4. Magdalenian spearthrower of reindeer antler 166
7.5. Casting a spear with a spearthrower 167
7.6. Spears bending during a demonstration throw 169
7.7. Deflection of a spear during throwing 169
7.8. The stability of a spear 171
7.9. Forces acting on a spear inclined to its flight path 172
7.10. The equilibrium angle of incidence for a spear’s flight 173
7.11. Variation in the angle of incidence during flight for three spears 174
7.12. Boomerang in flight 177
7.13. Moment on a boomerang due to lift 177
7.14. The right-hand rule for the direction of a moment 178
7.15. Precessional motion of a spinning disc 178
7.16. Geometry of a drawn bow 183
7.17. Bow-limb thickness and stave length 184
7.18. Force-draw curves of bows 184
7.19. A reflex bow 186
7.20. The archer’s paradox 187
7.21. A torsion catapult 188
7.22. The torsion spring 190
8.1. Increase in the height of centre of gravity during walking 195
8.2. The advantage of the pack animal 197
8.3. Wagon found in a bog near Debjerg, Denmark 199
8.4. Rolling friction (elastic deformation) 200
8.5. Rolling friction (plastic deformation) 202
8.6. One of the wheels of the Hui-Xian chariots 205
8.7. A chariot from a tomb in Thebes 209
8.8. Centre pole, yoke and fork harness 210
8.9. Yoke, pole and breast-strap harness 211
8.10. Shaft, yoke and fork harness 213
8.11. Shaft, fork and soft-collar harness 213
8.12. A wheelbarrow from Jiangxi Province, China 215
8.13. The Cosmolis of Memnon 217
8.14. Transporting a monolith in South Nias, Sumatra 218
8.15. Assyrian transportation of a statue for the Palace of Sennacherib 219
8.16. Egyptian transportation of a statue of Djehutihotep 220
8.17. A Malayang ponglong or sledge ways used for transporting logs 222
8.18. Poro, the largest statue erected on Easter Island 227
8.19. Mulloy’s hypothesis for the transportation of Poro 229
8.20. Force necessary to move Paro by Mulloy’s hypothesis 230
9.1. An Egyptian sea-going vessel (c. 2500 BC) 235
9.2. Variation of righting moment with angle of heel for a monohull 239
9.3. The forces on a slab-sided hull heeled through a small angle 241
9.4. The Na‘ehi‘a – a Hawaiian double-hulled canoe 242
9.5. Heling of a double-hulled canoe 243
9.6. A stability curve for the Na‘ehi‘a 244
9.7. A reconstructed trireme 246
9.8. The arrangement of oarsmen in the reconstructed trireme 246
9.9. The forces on an oar 248
9.10. The driving and heeling forces acting on a sail 250
9.11. Sail types 251
9.12. Force coefficients for sails 253
9.13. Methods of tacking, wearing and shunting 254
9.14. Waves generated by a boat 254
9.15. Performance of a trireme 258
9.16. Effect of aspect ratio on steering—oar efficiency 261
9.17. The Gokstad ship 262
9.18. Effect of mast position on sailing efficiency 263
10.1. Wave forms of a tuning fork and various wind instruments 269
10.2. A composite note formed by a fundamental and its first overtone 270
10.3. Beats formed by two notes of nearly the same frequency 271
10.4. Partially present with an octave fifth, major third and semitone 272
10.5. Von Helmholtz’s curve of dissonance 273
10.6. An Egyptian musician playing an arched harp 277
10.7. Formation of a standing wave in a vibrating string 279
10.8. Possible modes of vibration of a string 280
10.9. Resonance in open and closed tubes 282
10.10. Didjeridu being played in eastern Arnhem Land 286
10.11. A stand of Chinese chimes 289
10.12. Some nodal patterns obtained on a chimestone 289
10.13. The features of a zhong bell 290
TABLES

1. SI units 16
2. Ancient units of length 19
2.2. Ancient units of mass 21
2.3. Maximum effort pulling or pushing against a fixed object 24
2.4. Typical values of the coefficient of sliding friction 28
2.5. Power of various domestic animals 38
2.6. Maximum useful power of champion athletes 39
2.7. Useful human power in various activities 41
3.1. Mechanical properties of some typical materials 68
4.1. Moments of inertia about the centre of gravity of some geometric bodies 79
4.2. Tension in the ropes of a trispast 93
5.1. The strength of some building materials 101
5.2. Second moment of area of some common beam sections 110
6.1. Some results of the Los Angeles Abrasion Test 129
8.1. Loads carried by man and beast 194
8.2. Compressive yield strength of ground of various hardness 201
8.3. Rolling resistance of carts and wagons 204
8.4. Transportation by modern carts and wagons 207
9.1. Dimensions and data for the Nalehia 243
10.1. Power of various musical instruments 266
10.2. Comparison of the intervals in various scales 274
10.3. Privileged frequencies for a closed pipe 284
PREFACE

This book is about the material culture of ancient and non-industrial societies. The topics covered range from the fragments of siliceous stone that are the earliest known hominid artifacts to the development of watermills and other artifacts up to the Industrial Age. Our case studies are selected from as wide a range of societies as possible to try to avoid the Eurocentric bias that can be seen in some histories of technology. We consider not only archaeological artifacts but also ethnographic and historical evidence from traditional hunter-gatherers and other non-Industrial peoples such as, for example, the Australian Aborigines, the Polynesians and the Ottoman Turks. Some ethnographic artifacts can be of great value in reconstructing or inferring the properties and performances of archaeological ones. We encompass all modern artifacts used in non-Industrial societies under the label ‘traditional’. Many of our examples of hunter-gatherer artifacts are from the material culture of the Australian Aborigines. Our bias is partly because we are most familiar with the traditional material culture of our own country, but it is also because the Aborigines comprised the world’s largest population of hunter-gatherers in modern times and therefore much research has been done on their material culture.

The idea of a book about mechanics of early and traditional technology occurred to us during an archaeological conference on stone tools that was held in Vancouver some years ago. We gave a joint paper about the mechanics of stone flaking, a topic that drew on our two areas of special interest: engineering fracture mechanics and prehistoric stone technology. While the audience of archaeologists appreciated what we were saying most of the delegates did not know sufficient mechanics theory to understand how we had arrived at our conclusions; nor was there much comprehension of mechanics terminology. This general lack of familiarity with mechanics theory is not surprising. The structure of college and university education does not particularly encourage students in archaeology or anthropology, or in the humanities in general, to study the sciences. While the study of artifacts is a fundamental part of archaeology and cultural anthropology, the study of how they perform mechanically has a patchy history. Franz Boas was the first
Preface

anthropologist to write a general account of the mechanics and performance of traditional artifacts, in the introduction to a general book on anthropology (Boas 1938:238–81). However in recent decades there have been few general accounts of mechanics in material culture studies, though there have been many that deal with specific applications, a large number of which we refer to in this book. Mechanics serves anthropology not only in providing an understanding of artifacts and technological processes but in its applications to problems in biological evolution as well – as shown in recent biomechanical studies of the hominin face and cranial architecture (e.g. Demes 1982; Russell 1985).

This book is not a history of technology, nor one of mechanical science, though in our presentation of mechanical principles we have taken a partly historical approach. Mechanics forms the basis of many branches of science, including engineering, and is necessary in the development of much new material culture – be it a component for an artificial hip or a new transport system. In this book we present the interdisciplinary study of the mechanics of material culture. Interdisciplinary studies involving mechanics are not new. For example biomechanics is now a firmly established interdisciplinary field and mechatronics, the study of both the mechanical and electronic aspects of robots, is a fast expanding field.

This book, which illustrates the applications of mechanics in archaeology, should also serve a wider readership in disciplines such as cultural anthropology, engineering, history, and physics. Because our book embodies the first contemporary review of the field we introduce basic mechanical concepts in the earlier chapters and bring in other mechanics in later chapters as they become relevant to the various analyses. Because a number of our readers do not have a grounding in advanced mathematics we have kept our calculations reasonably elementary so that they should be understandable to anyone who has completed secondary school mathematics. Those of our readers who are uncomfortable with equations can still grasp the essentials of the mechanical concepts we present. The mathematical details of the mechanics of any artifact or technological process can be passed over lightly without losing continuity in reading the text.

In developing our style we were influenced by Lloyd Taylor’s book, Physics, the pioneer science. We also much admired the lucid style of J. E. Gordon’s two books, The new science of strong materials and Structures, which we found valuable sources of information. We would have found it difficult to begin the mechanical studies of the wide range of artifacts without the two monumental works: A history of technology edited by Charles Singer and colleagues, and Science and civilisation in China written by Joseph Needham and his co-authors.
Preface

For permission to publish photographs and drawings we thank the following individuals and institutions: Fig. 1.2, Carnegie Museum of Natural History (photo by Rudyerd Boulton); Fig. 2.7 and 2.8, Vatican Museums and Art Galleries; Fig. 2.10, Wilkinson Sword Group Australia Ltd., Melbourne; Fig. 5.2, Paul Popper Ltd., Photographic Agency, London (photo by Paul Popper); Fig. 5.14, The British School at Rome, Exhibition Road, London; Fig. 6.2, F. P. Dickson; Fig. 7.6, Bibliographisches Institut and F. A. Brockhaus (copyright Associated Press); Fig. 7.12, Dr Felix Hess, Rijksuniversiteit te Groningen; Fig. 8.3, National Museum, Copenhagen; Fig. 9.7, John Coates and CUP; Fig. 9.17, University Museum of National Antiquities, Oslo; Fig. 10.10, Jennifer Steel Photography, North Sydney.

The progress of our work has depended very much on the interest and generosity of our colleagues. To those who have helped and encouraged us we extend our thanks. Various drafts of this work were commented on by Kim Akerman, John Coates, Barry Cundy, Frank Dickson, Brian Hayden, Yiu-Wing Mai, Vincent Megaw, Andréé Rosenfeld, Leonn Satterthwait and Roger Tanner. We are especially indebted to Leonn Satterthwait for his patience and good humour during our revisions. We also thank Naguib Kanawati for procuring handmade Egyptian rope; Jenny Astridge, for her invaluable help in hunting down obscure texts; Trevor Shearing, whose photographic skills are evident in a number of the plate pages; and Stephanie Frost, Lyn Kennedy and Marichu Agudo, who with patience prepared the typescript. We acknowledge the support of the Australian Research Grants Scheme, which has funded a number of the experimental studies described in this book, and thank the Department of Mechanical Engineering, Sydney University, for supporting this rather esoteric project for an engineering department.