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Experimental errors

1.1 Why estimate errors?

When performing experiments at school, we usually considered that the
job was over once we obtained a numerical value for the quantity we
were trying to measure. At university, and even more so in everyday
situations in the laboratory, we are concerned not only with the answer
but also with its accuracy. This accuracy is expressed by quoting an
experimental error on the quantity of interest. Thus a determination of
the acceleration due to gravity in our laboratory might yield an answer
9 =(9.70 £ 0.15) m/s’.
In Section 1.4, we will say more specifically what we mean by the error
of £0.15. At this stage it is sufficient to state that the more accurate the
experiment the smaller the error; and that the numerical value of the
error gives an indication of how far from the true answer this particular
experiment may be.

The reason we are so insistent on every measurement including an
error estimate is as follows. Scientists are rarely interested in measure-
ment for its own sake, but more often will use it to test a theory, to
compare with other experiments measuring the same quantity, to use
this parameter to help predict the result of a different experiment, and
so on. Then the numerical value of the error becomes crucial in the
interpretation of the result.

For example, maybe we measured the acceleration due to gravity in
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2 Ezperimental errors

order to compare it with the value of 9.81 m/s%* measured in another
laboratory a few miles away last year. We could be doing this in order to
see whether there had been some dramatic change in the gravitational
constant G over the intervening period; to try to detect a large gold mine
which could affect the gravitational field in our neighbourhood; to find
out if the earth had stopped spinning (although there are easier ways
of doing this); to discover the existence of a new force in nature which
could make the period of a pendulum depend on the local topography,
etc.

With a measurement of 9.70 m/sz, do we have evidence for a discrep-
ancy? There are essentially three possibilities.

Possibility 1
If as suggested above the experimental error is :0.15, then our determi-
nation looks satisfactorily in agreement with the expected value,

i.e. 9.70 £ 0.15 is consistent with 9.81.

Possibility 2

If we had performed a much more accurate experiment and had suc-
ceeded in reducing the experimental error to 40.01, then our measure-
ment is inconsistent with the previous value. Hence, we should worry
whether our experimental result and/or the error estimate are wrong.
Alternatively, we may have made a world shattering discovery.

1.e. 9.70 4 0.01 is inconsistent with 9.81.

Possibility 3

If we had been stupid enough to time only one swing of the pendulum,
then the error on g could have been as large as £5. Our result is now
consistent with expectation, but the accuracy is so low that it would be
incapable of detecting even quite significant differences.

1.e. 9.70 £ 5 is consistent with 9.81,
and with many other values too.

Thus for a given result of our experiment, our reaction - ‘Our measure-
ment is in good shape’ OR ‘We have made a world shattering discovery’
OR ‘We should find out how to do better experiments’ — depends on the

* Since this is an experimental number, it too has an uncertainty, but
we assume that it has been measured so well that we can effectively

forget about it here.
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Random and systematic errors 3

numerical estimate of the accuracy of our experiment. Conversely, if we
know only that the result of the experiment is that the value of g was
determined as 9.70 m/s? (but do not know the value of the experimental
error), then we are completely unable to judge the significance of this
result.

The moral is clear. Whenever you determine a parameter, estimate
the error or your experiment is useless.

A similar remark applies to ‘null measurements’. These occur in sit-
uations where you investigate whether changing the conditions of an
experiment affects its result. For example, if you increase the amplitude
of swing of your pendulum, does the period change? If, to the accuracy
with which you can make measurements, you see no effect, it is tempting
to record that ‘No change was seen’. However this in itself is not a help-
ful statement. It may become important at some later stage to know
whether the period was constant to within 1%, or perhaps within 1 part
in a million. Thus, for example, the period is expected to depend slightly
on the amplitude of swing, and we may be interested to know whether
our observations are consistent with the expected change. Alternatively
we may need to know how accurate the pendulum is as a clock, given
that its amplitude is sometimes 10° and at others 5°. With simply the
statement ‘No change was seen’, we have no idea at all of what magni-
tude of variation of the period could be ruled out. It is thus essential in
these situations to give an idea of the maximum change that we would
have been capable of detecting. This could consist of a statement like
‘No change was observed; the maximum possible change in period was
less than 1 part in 300’.

It is worth remembering that null measurements, with sufficiently
good limits on the possible change, have sometimes led to real progress.
Thus, at the end of the last century, Michelson and Morley performed an
experiment to measure the speed of the earth through the hypothesised
aether. This would have produced shifts in the optical interference fringe
pattern produced in their apparatus. They observed no such shift, and
the limit they were able to place on the effect was sufficiently stringent
that the idea of the aether was discarded. The absence of an aether was
one of the cornerstones on which Einstein’s Special Theory of Relativity
was built.

Thus ‘null observations’ can be far from useless, provided you specify
what the maximum possible value of the effect could have been.
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4 Experimental errors

1.2 Random and systematic errors
1.2.1 What they are

There are two fundamentally different sorts of errors associated with any
measurement procedure, namely random (or statistical) and systematic
errors. Random errors come from the inability of any measuring device
(and the scientist using it) to give infinitely accurate answers.* Another
source of random errors is the fluctuations that occur in observations on
a small sample drawn from a large population. On the other hand, sys-
tematic errors result in measurements that for one reason or another are
simply wrong. Thus when we make a series of repeated measurements,
the effect of random errors is to produce a spread of answers scattered
around the true value. In contrast, systematic errors caa cause the mea-
surements to be offset from the correct value, even though the individual
results can be consistent with each other. (See Fig. 1.1.)

Thus, for example, suppose someone asks you the exact time. You
look at your watch, which has only hour and minute hands, but no
second hand. So when you try to estimate the time, you will have a
random error of something of the order of a minute. You certainly
would have extreme difficulty trying to be precise to the nearest second.
In addition to this random error, there may well be systematic errors too.
For example, your watch may be running slow, so that it is wrong by an
amount that you are not aware of but may in fact be 10 minutes. Again,
you may recently have come back home to England from Switzerland,
and forgotten to reset your watch, so that it is out by 1 hour. As is
apparent from this example, the random error is easier to estimate, but
there is the danger that if you are not careful you may be completely
unaware of the more important systematic effects.

As a more laboratory oriented example, we now consider an exper-
iment designed to measure the value of an unknown resistor, whose
resistance Ro is determined as
_ -0
TN

(see Fig. 1.2). Thus we have to measure the voltages V) and V3, and the

Ry Ry (1.1)

* Except possibly for the situation where we are measuring something
that is integral (e.g., the number of cosmic rays passing through a
small detector during one minute). See, however, the next sentence
of the text, and the remarks about Poisson distributions in Section
1.2.2.

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521424631
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521424631 - A Practical Guide to Data Analysis for Physical Science Students -
Louis Lyons

Excerpt

More information

Random and systematic errors 5

t (a)
n
X ——
!
T (b)
n
i
=
Xg
T {c
n
F—
Xo

Fig. 1.1. Random and systematic errors. The figures show the
results of repeated measurements of some quantity z whose true
value is shown by the arrows. The effect of random errors is to
produce a spread of measurements, centred on z, (see (a)). On
the other hand, systematic effects (b) can shift the results, while
not necessarily producing a spread. Finally, the effect of random
and systematic errors, shown in (c}, is to produce a distribution of
answers, centred away from z,.

other resistance R;. The random errors are those associated with the
measurements of these quantities.
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Fig. 1.2. Circuit for determining an unknown resistance Ry in terms
of a known one Rj and the two voltages V7 and V5.

The most obvious sources of systematic errors are the following.

(i)  The meters or oscilloscopes that we are using to measure V; and V5
may be incorrectly calibrated. How this affects the answer depends
on whether the same device is used to measure the two voltages.
(See section 1.8.)

(i) The meter used to measure the resistor R; may similarly be in
€ITor.

(iii) If our voltage source were AC, then stray capacitances and/or in-
ductances could affect our answer.

(iv) The resistors may be temperature dependent, and our measure-
ment may be made under conditions which differ from those for
which we are interested in the answer.

(v) The impedances of the voltmeters may not be large enough for
the validity of the approximation that the currents through the
resistors are the same.

(vi) Electrical pick-up could affect the readings of the voltmeters.

Systematic errors can thus arise on any of the actual measurements
that are required in order to calculate the final answer (e.g. points (i) and
(i) above). Alternatively, they can be due to more indirect causes; thus
effects (iii)—(vi) are produced not by our instruments being incorrect,
but more by the fact that we are not measuring exactly what we are
supposed to.

In other situations it might be that there are implicit assumptions in
the derivation of the equation on which we are relying for obtaining our
answer. For example, the period of a pendulum of length [ is 27r\/1/_g
only if the amplitude of oscillations is small, if we can neglect air resis-
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Random and systematic errors 7

tance, if the top of the pendulum is rigidly secured, etc. If these are not
true, then our experiment has a systematic error. Whether such effects
are significant or not depends on their magnitude compared with those
of the random errors.

1.2.2 Estimating random errors

A recurring theme in this book is the necessity of providing error es-
timates on any measured quantity. Because of their nature, random
errors will make themselves apparent by producing somewhat different
values of the measured parameter in a series of repeated measurements.
The estimated accuracy of the parameter can then be obtained from the
spread in measured values as described in Section 1.4.

An alternative method of estimating the accuracy of the answer exists
in cases where the spread of measurements arises because of the limited
accuracy of measuring devices. The estimates of the uncertainties of such
individual measurements can be combined as explained in Section 1.7 in
order to derive the uncertainty of the final calculated parameter. This
approach can be used in situations where a repeated set of measurements
is not available for the method described in the previous paragraph. In
cases where both approaches can be used, they should of course yield
consistent answers.

The accuracy of our measurements will in general play little part in
determining the accuracy of the final parameter in those situations in
which the measurements are made on a population which exhibits its
own natural spread of values. For example, the heights of ten-year-old
children are scattered by an amount which is larger than the uncertainty
with which the height of any single child can be measured. It is then this
scatter and the sample size which determine the accuracy of the answer.

A similar situation arises where the observation consists in counting
independent random events in a given interval. The spread of values
will usually be larger than the accuracy of counting (which may well be
exact); for an expected number of observations n, the spread is 1/n. This
can be derived from the properties of the Poisson distribution, which is
discussed in Appendix 4.

Another example is provided by the measurement of the mean lifetime
7 of a radioactive element. This we can do by finding the average of the
observed decay times of a sample of the disintegrations. The nature of
radioactivity is such that not all decays occur at the identical time r,
but in fact a large number would follow an exponential distribution (see
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Fig. 1.3. An exponential N = N, e~*/7 for the expected distri-

bution of decay times ¢ of radioactive disintegrations of a source

of mean lifetime r. The bars below the ¢ axis give two possible

sets of observed decay times in experiments where each detected

ten decays. The means of these times for the two samples are 0.687

and 0.967. They differ from r because of the statistical fluctuations
associated with small samples.

Fig. 1.3). Thus the observed times for a small number of decays could
fluctuate significantly if we repeated the experiment. This variation is
a random effect, and is not connected with the accuracy with which we
can measure individual decay times, which could be very much better
than 7.

1.2.3 Worrying about systematic errors

For systematic errors, the ‘repeated measurement’ approach will not
work; if our ohmeter is reading in kilohms while we think it is in ohms,
the resistance will come out too small by a factor of ~1000 each time
we repeat the experiment, and yet everything will look consistent.
Ideally, of course, all systematic effects should be absent. But if it
is thought that such a distortion may be present, then at least some
attempt can be made to estimate its importance and to correct for it.
Thus if we suspect a systematic error on the ohmeter, we can check it by
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measuring some known resistors. Alternatively, if we are worried that
the amplitude of our pendulum is too large, we can measure the period
for different initial displacements, and then extrapolate our answer to
the limit of a very small amplitude. In effect, we are then converting
what was previously a systematic error into what is hopefully only a
random one.

One possible check that can sometimes be helpful is to use constraints
that may be relevant to the particular problem. For example, we may
want to know whether a certain protractor has been correctly calibrated.
One possible test is to use this protractor to measure the sum of the
angles of a triangle. If our answer differs significantly from 180°, our
protractor may be in error.

In general, there are no simple rules or prescriptions for eliminating
systematic errors. To a large extent it requires common sense plus ex-
perience to know what are the possible dangerous sources of errors of
this type.

Random errors are usually more amenable to methodical study, and
the rest of this chapter is largely devoted to them. Nevertheless, it is
important to remember that in many situations the accuracy of a mea-
surement is dominated by the possible systematic error of the instru-
ment, rather than by the precision with which you can actually make
the reading.

Finally we assert that a good experimentalist is one who minimises
and realistically estimates the random errors of his apparatus, while
reducing the effect of systematic errors to a much smaller level.

1.3 Distributions

In Section 1.6 we are going to consider in more detail what is meant
by the error & on a measurement. However, since this is related to the
concept of the spread of values obtained from a set of repeated measure-
ments, whose distribution will often resemble a Gaussian {or normal)
distribution, we will first have three mathematical digressions into the
subjects of (a) distributions in general, (b) the mean and variance of a
distribution, and (c) the Gaussian distribution.

A distribution n{z) will describe how often a value of the variable
z occurs in a defined sample. The variable 2 could be continuous or
discrete, and its values could be confined to a finite range (e.g. 0-1) or
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10 Ezperimental errors

Table 1.1. Ezamples of distributions

Character Limits z variable n(z)

1— o0 Integer « No. of times you have
produced a completely
debugged computer
program after «
compilations

Discrete 17 Day of week No. of marriages on
day z

—13.6eV — 0 Energies of ground No. of atoms with
and excited states  electrons in state of
of hydrogen atoms energy z in atomic

hydrogen at 30000°

—00 — 00 Measured value of  No. of times measur-
parameter ment z is observed
Continuous 0— Time it takes to No. of readers taking

solve all problems  time z
in this book

0 — 24 hours  Hours sleep each No. of people sleeping
night for time z

could extend to oo (or could occupy a semi-infinite range, e.g. positive
values only). Some examples are given in Table 1.1.

As an example, Fig. 1.4 shows possible distributions of a continuous
variable, the height h of 30-year-old men. If only a few values are avail-
able, the data can be presented by marking a bar along the h axis for
each measurement (see Fig. 1.4(a)). In Fig. 1.4(b), the same data is
shown as a histogram, where a fairly wide bin size for h is used and the
vertical axis is labelled as n, the number of observations per centimetre
interval of h, despite the fact that the bin size Ah used is 10 cm. The
actual number of men corresponding to a given bin is nAh, and the total
number of men appearing in the histogram is )" nAh. If 100 times more
measurements were available, the number of entries in each bin of the
histogram would increase by a large factor (Fig. 1.4(c)), but it would
now become sensible to draw the histogram with smaller bins, in order
to display the shape of the distribution with better resolution. Because

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521424631
http://www.cambridge.org
http://www.cambridge.org

