
CHAPTER 0 Notational conventions

We now specify some of the notations and conventions used throughout this book. We
make use of some notions from discrete mathematics such as strings, sets, functions,
tuples, and graphs. All of these are reviewed in Appendix A.

Standard notation
We let Z = {0, ±1, ±2, . . . } denote the set of integers, and N denote the set of nat-
ural numbers (i.e., nonnegative integers). A number denoted by one of the letters
i, j, k, �, m, n is always assumed to be an integer. If n ≥ 1, then [n] denotes the set
{1, . . . , n}. For a real number x, we denote by �x� the smallest n ∈ Z such that n ≥ x and
by �x	 the largest n ∈ Z such that n ≤ x. Whenever we use a real number in a context
requiring an integer, the operator � � is implied. We denote by log x the logarithm of x
to the base 2. We say that a condition P(n) holds for sufficiently large n if there exists
some number N such that P(n) holds for every n > N (for example, 2n > 100n2 for
sufficiently large n). We use expressions such as

∑
i f (i) (as opposed to, say,

∑n
i=1 f (i))

when the range of values i takes is obvious from the context. If u is a string or vector,
then ui denotes the value of the ith symbol/coordinate of u.

Strings
If S is a finite set then a string over the alphabet S is a finite ordered tuple of elements
from S. In this book we will typically consider strings over the binary alphabet {0, 1}.
For any integer n ≥ 0, we denote by Sn the set of length-n strings over S (S0 denotes
the singleton consisting of the empty tuple). We denote by S∗ the set of all strings (i.e.,
S∗ = ∪n≥0Sn). If x and y are strings, then we denote their concatenation (the tuple that
contains first the elements of x and then the elements of y) by x ◦y or sometimes simply
xy. If x is a string and k ≥ 1 is a natural number, then xk denotes the concatenation of
k copies of x. For example, 1k denotes the string consisting of k ones. The length of a
string x is denoted by |x|.

Additional notation
If S is a distribution then we use x ∈

R
S to say that x is a random variable that is

distributed according to S; if S is a set then this denotes that x is distributed uniformly
over the members of S. We denote by Un the uniform distribution over {0, 1}n. For two
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2 Notational conventions

length-n strings x, y ∈ {0, 1}n, we denote by x � y their dot product modulo 2; that is
x � y = ∑

i xiyi (mod 2). In contrast, the inner product of two n-dimensional real or
complex vectors u, v is denoted by 〈u, v〉 (see Section A.5.1). For any object x, we use
�x� (not to be confused with the floor operator �x	) to denote the representation of x as
a string (see Section 0.1).

0.1 REPRESENTING OBJECTS AS STRINGS

The basic computational task considered in this book is computing a function. In fact, we
will typically restrict ourselves to functions whose inputs and outputs are finite strings
of bits (i.e., members of {0, 1}∗).

Representation
Considering only functions that operate on bit strings is not a real restriction since
simple encodings can be used to represent general objects—integers, pairs of integers,
graphs, vectors, matrices, etc.—as strings of bits. For example, we can represent an
integer as a string using the binary expansion (e.g., 34 is represented as 100010) and
a graph as its adjacency matrix (i.e., an n vertex graph G is represented by an n ×
n 0/1-valued matrix A such that Ai,j = 1 iff the edge i j is present in G). We will
typically avoid dealing explicitly with such low-level issues of representation and will
use �x� to denote some canonical (and unspecified) binary representation of the object
x. Often we will drop the symbols �� and simply use x to denote both the object and its
representation.

Representing pairs and tuples
We use the notation 〈x, y〉 to denote the ordered pair consisting of x and y. A canon-
ical representation for 〈x, y〉 can be easily obtained from the representations of x and
y. For example, we can first encode 〈x, y〉 as the string �x�# �y� over the alphabet
{0, 1, #} and then use the mapping 0 �→ 00, 1 �→ 11, # �→ 01 to convert this repre-
sentation into a string of bits. To reduce notational clutter, instead of �〈x, y〉� we use
〈x, y〉 to denote not only the pair consisting of x and y but also the representation
of this pair as a binary string. Similarly, we use 〈x, y, z〉 to denote both the ordered
triple consisting of x, y, z and its representation, and use similar notation for 4-tuples,
5-tuples, etc.

Computing functions with nonstring inputs or outputs
The idea of representation allows us to talk about computing functions whose inputs
are not strings (e.g., functions that take natural numbers as inputs). In all these
cases, we implicitly identify any function f whose domain and range are not strings
with the function g : {0, 1}∗ → {0, 1}∗ that given a representation of an object x as
input, outputs the representation of f (x). Also, using the representation of pairs and
tuples, we can also talk about computing functions that have more than one input or
output.
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0.3. Big-Oh Notation 3

0.2 DECISION PROBLEMS/LANGUAGES

An important special case of functions mapping strings to strings is the case of Boolean
functions, whose output is a single bit. We identify such a function f with the subset
Lf = {x : f (x) = 1} of {0, 1}∗ and call such sets languages or decision problems (we use
these terms interchangeably).1 We identify the computational problem of computing f
(i.e., given x compute f (x)) with the problem of deciding the language Lf (i.e., given x,
decide whether x ∈ Lf ).

EXAMPLE 0.1

By representing the possible invitees to a dinner party with the vertices of a graph
having an edge between any two people who don’t get along, the dinner party com-
putational problem from the introduction becomes the problem of finding a maximum
sized independent set (set of vertices without any common edges) in a given graph. The
corresponding language is:

INDSET = {〈G, k〉 : ∃S ⊆ V(G) s.t. |S| ≥ k and ∀u, v ∈ S, u v �∈ E(G)}
An algorithm to solve this language will tell us, on input a graph G and a number

k, whether there exists a conflict-free set of invitees, called an independent set, of size
at least k. It is not immediately clear that such an algorithm can be used to actually find
such a set, but we will see this is the case in Chapter 2. For now, let’s take it on faith
that this is a good formalization of this problem.

0.3 BIG-OH NOTATION

We will typically measure the computational efficiency of an algorithm as the number
of a basic operations it performs as a function of its input length. That is, the efficiency
of an algorithm can be captured by a function T from the set N of natural numbers
to itself such that T(n) is equal to the maximum number of basic operations that the
algorithm performs on inputs of length n. However, this function T is sometimes overly
dependant on the low-level details of our definition of a basic operation. For example,
the addition algorithm will take about three times more operations if it uses addition
of single digit binary (i.e., base 2) numbers as a basic operation, as opposed to decimal
(i.e., base 10) numbers. To help us ignore these low-level details and focus on the big
picture, the following well-known notation is very useful.

Definition 0.2 (Big-Oh notation) If f , g are two functions from N to N, then we (1) say
that f = O(g) if there exists a constant c such that f (n) ≤ c · g(n) for every sufficiently

1 The word “language” is perhaps not an ideal choice to denote subsets of {0, 1}∗, but for historical reasons this
is by now standard terminology.
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4 Notational conventions

large n, (2) say that f = �(g) if g = O(f ), (3) say that f = �(g) is f = O(g) and
g = O(f ), (4) say that f = o(g) if for every ε > 0, f (n) ≤ ε · g(n) for every sufficiently
large n, and (5) say that f = ω(g) if g = o(f ).

To emphasize the input parameter, we often write f (n) = O(g(n)) instead of f =
O(g), and use similar notation for o, �, ω, �.

EXAMPLE 0.3

Here are some examples for use of big-Oh notation:
1. If f (n) = 100n log n and g(n) = n2 then we have the relations f = O(g), g = �(f ),

f = o(g), g = ω(f ).
2. If f (n) = 100n2 + 24n + 2 log n and g(n) = n2 then f = O(g). We will often write

this relation as f (n) = O(n2). Note that we also have the relation g = O(f ) and
hence f = �(g) and g = �(f ).

3. If f (n) = min{n, 106} and g(n) = 1 for every n then f = O(g). We use the notation
f = O(1) to denote this. Similarly, if h is a function that tends to infinity with n (i.e.,
for every c it holds that h(n) > c for n sufficiently large) then we write h = ω(1).

4. If f (n) = 2n then for every number c ∈ N, if g(n) = nc then g = o(f ). We sometimes
write this as 2n = nω(1). Similarly, we also write h(n) = nO(1) to denote the fact
that h is bounded from above by some polynomial. That is, there exist a number
c > 0 such that for sufficiently large n, h(n) ≤ nc. We’ll sometimes also also write
h(n) = poly(n) in this case.

For more examples and explanations, see any undergraduate algorithms text such
as [DPV06, KT06, CLRS01] or Section 7.1 in Sipser’s book [Sip96].

EXERCISES

0.1. For each of the following pairs of functions f , g determine whether f = o(g), g = o(f )
or f = �(g). If f = o(g) then find the first number n such that f (n) < g(n):
(a) f (n) = n2, g(n) = 2n2 + 100

√
n.

(b) f (n) = n100, g(n) = 2n/100.
(c) f (n) = n100, g(n) = 2n1/100

.

(d) f (n) = √
n, g(n) = 2

√
log n.

(e) f (n) = n100, g(n) = 2(log n)2
.

(f) f (n) = 1000n, g(n) = n log n.

0.2. For each of the following recursively defined functions f , find a closed (nonrecursive)
expression for a function g such that f (n) = �(g(n)), and prove that this is the case.
(Note: Below we only supply the recursive rule, you can assume that f (1) = f (2) =
· · · = f (10) = 1 and the recursive rule is applied for n > 10; in any case, regardless
of how the base case is defined it won’t make any difference to the answer. Can you
see why?)
(a) f (n) = f (n − 1) + 10.
(b) f (n) = f (n − 1) + n.
(c) f (n) = 2f (n − 1).
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Exercises 5

Figure 0.1. Machine with Concrete by Arthur Ganson. Reproduced with permission of the artist.

(d) f (n) = f (n/2) + 10.
(e) f (n) = f (n/2) + n.
(f) f (n) = 2f (n/2) + n.
(g) f (n) = 3f (n/2).
(h) f (n) = 2f (n/2) + O(n2).
H531

0.3. The MIT museum contains a kinetic sculpture by Arthur Ganson called Machine
with Concrete (see Figure 0.1). It consists of 13 gears connected to one another in a
series such that each gear moves 50 times slower than the previous one. The fastest
gear is constantly rotated by an engine at a rate of 212 rotations per minute. The
slowest gear is fixed to a block of concrete and so apparently cannot move at all.
Explain why this machine does not break apart.
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PART ONE BASIC COMPLEXITY CLASSES
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CHAPTER 1 The computational model—and why it
doesn’t matter

The idea behind digital computers may be explained by saying that these machines are intended
to carry out any operations which could be done by a human computer. The human computer is
supposed to be following fixed rules; he has no authority to deviate from them in any detail. We
may suppose that these rules are supplied in a book, which is altered whenever he is put on to a
new job. He has also an unlimited supply of paper on which he does his calculations.

– Alan Turing, 1950

[Turing] has for the first time succeeded in giving an absolute definition of an interesting episte-
mological notion, i.e., one not depending on the formalism chosen.

– Kurt Gödel, 1946

The problem of mathematically modeling computation may at first seem insur-
mountable: Throughout history people have been solving computational tasks using a
wide variety of methods, ranging from intuition and “eureka” moments to mechanical
devices such as abacus or sliderules to modern computers. Besides that, other organisms
and systems in nature are also faced with and solve computational tasks every day using
a bewildering array of mechanisms. How can you find a simple mathematical model that
captures all of these ways to compute? The problem is even further exacerbated since
in this book we are interested in issues of computational efficiency. Here, at first glance,
it seems that we have to be very careful about our choice of a computational model,
since even a kid knows that whether or not a new video game program is “efficiently
computable” depends upon his computer’s hardware.

Surprisingly enough, it turns out there there is a simple mathematical model that
suffices for studying many questions about computation and its efficiency—the Turing
machine. It suffices to restrict attention to this single model since it seems able to
simulate all physically realizable computational methods with little loss of efficiency.
Thus the set of “efficiently solvable” computational tasks is at least as large for the
Turing machine as for any other method of computation. (One possible exception is
the quantum computer model described in Chapter 10, but we do not currently know
if it is physically realizable.)

In this chapter, we formally define Turing machines and survey some of their basic
properties. Section 1.1 sketches the model and its basic properties. That section also
gives an overview of the results of Sections 1.2 through 1.5 for the casual readers who
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10 The computational model—and why it doesn’t matter

wish to skip the somewhat messy details of the model and go on to complexity theory,
which begins with Section 1.6.

Since complexity theory is concerned with computational efficiency, Section 1.6
contains one of the most important definitions in this book: the definition of complexity
class P, which aims to capture mathematically the set of all decision problems that can
be efficiently solved. Section 1.6 also contains some discussion on whether or not the
class P truly captures the informal notion of “efficient computation.” The section also
points out how throughout the book the definition of the Turing machine and the class
P will be a starting point for definitions of many other models, including nondeterminis-
tic, probabilistic, and quantum Turing machines, Boolean circuits, parallel computers,
decision trees, and communication games. Some of these models are introduced to
study arguably realizable modes of physical computation, while others are mainly used
to gain insights on Turing machine computations.

1.1 MODELING COMPUTATION: WHAT YOU REALLY NEED TO KNOW

Some tedious notation is unavoidable if one talks formally about Turing machines. We
provide an intuitive overview of this material for casual readers who can then skip ahead
to complexity questions, which begin with Section 1.6. Such a reader can always return
to the skipped sections on the rare occasions in the rest of the book when we actually
use details of the Turing machine model.

For thousands of years, the term “computation” was understood to mean appli-
cation of mechanical rules to manipulate numbers, where the person/machine doing
the manipulation is allowed a scratch pad on which to write the intermediate results.
The Turing machine is a concrete embodiment of this intuitive notion. Section 1.2.1
shows that it can be also viewed as the equivalent of any modern programming
language—albeit one with no built-in prohibition on its memory size.1

Here we describe this model informally along the lines of Turing’s quote at the start
of the chapter. Let f be a function that takes a string of bits (i.e., a member of the set
{0, 1}∗) and outputs either 0 or 1. An algorithm for computing f is a set of mechanical
rules, such that by following them we can compute f (x) given any input x ∈ {0, 1}∗. The
set of rules being followed is fixed (i.e., the same rules must work for all possible inputs)
though each rule in this set may be applied arbitrarily many times. Each rule involves
one or more of the following “elementary” operations:

1. Read a bit of the input.
2. Read a bit (or possibly a symbol from a slightly larger alphabet, say a digit in the set

{0, . . . , 9}) from the scratch pad or working space we allow the algorithm to use.

Based on the values read,

1. Write a bit/symbol to the scratch pad.
2. Either stop and output 0 or 1, or choose a new rule from the set that will be applied next.

1 Though the assumption of a potentially infinite memory may seem unrealistic at first, in the complexity setting it
is of no consequence since we will restrict our study to machines that use at most a finite number of computational
steps and memory cells any given input (the number allowed will depend upon the input size).
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1.2. The Turing Machine 11

Finally, the running time is the number of these basic operations performed. We
measure it in asymptotic terms, so we say a machine runs in time T(n) if it performs at
most T(n) basic operations time on inputs of length n.

The following are simple facts about this model.

1. The model is robust to almost any tweak in the definition such as changing the alphabet
from {0, 1, . . . , 9} to {0, 1}, or allowing multiple scratchpads, and so on. The most basic
version of the model can simulate the most complicated version with at most polynomial
(actually quadratic) slowdown. Thus t steps on the complicated model can be simulated
in O(tc) steps on the weaker model where c is a constant depending only on the two
models. See Section 1.3.

2. An algorithm (i.e., a machine) can be represented as a bit string once we decide on
some canonical encoding. Thus an algorithm/machine can be viewed as a possible input
to another algorithm—this makes the boundary between input, software, and hardware
very fluid. (As an aside, we note that this fluidity is the basis of a lot of computer
technology.) We denote by Mα the machine whose representation as a bit string is α.

3. There is a universal Turing machine U that can simulate any other Turing machine given
its bit representation. Given a pair of bit strings (x, α) as input, this machine simulates
the behavior of Mα on input x. This simulation is very efficient: If the running time of
Mα was T(|x|), then the running time of U is O(T(|x|) log T(|x|)). See Section 1.4.

4. The previous two facts can be used to easily prove the existence of functions that are not
computable by any Turing machine; see Section 1.5. Uncomputability has an intimate
connection to Gödel’s famous Incompleteness Theorem; see Section 1.5.2.

1.2 THE TURING MACHINE

The k-tape Turing machine (TM) concretely realizes the above informal notion in the
following way (see Figure 1.1).

 

q7Register

Read only head

Input 
tape

Work 
tape

Output 
tape

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Read/write head

>

1 1 0 1 0 1 0 0 0 1>

Read/write head

Figure 1.1. A snapshot of the execution of a three-tape Turing machine M with an input tape, a work tape,
and an output tape.
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12 The computational model—and why it doesn’t matter

Scratch pad
The scratch pad consists of k tapes. A tape is an infinite one-directional line of cells,
each of which can hold a symbol from a finite set � called the alphabet of the machine.
Each tape is equipped with a tape head that can potentially read or write symbols to the
tape one cell at a time. The machine’s computation is divided into discrete time steps,
and the head can move left or right one cell in each step.

The first tape of the machine is designated as the input tape. The machine’s head
can only read symbols from that tape, not write them—a so-called read-only head. The
k − 1 read-write tapes are called work tapes, and the last one of them is designated
as the output tape of the machine, on which it writes its final answer before halting its
computation.

There also are variants of Turing machines with random access memory,2 but it
turns out that their computational powers are equivalent to standard Turing machines
(see Exercise 1.9).

Finite set of operations/rules
The machine has a finite set of states, denoted Q. The machine contains a “register” that
can hold a single element of Q; this is the “state” of the machine at that instant. This state
determines its action at the next computational step, which consists of the following:
(1) read the symbols in the cells directly under the k heads; (2) for the k − 1 read-write
tapes, replace each symbol with a new symbol (it has the option of not changing the
tape by writing down the old symbol again); (3) change its register to contain another
state from the finite set Q (it has the option not to change its state by choosing the
old state again); and (4) move each head one cell to the left or to the right (or stay in
place).

One can think of the Turing machine as a simplified modern computer, with the
machine’s tape corresponding to a computer’s memory and the transition function and
register corresponding to the computer’s central processing unit (CPU). However, it’s
best to think of Turing machines as simply a formal way to describe algorithms. Even
though algorithms are often best described by plain English text, it is sometimes useful
to express them by such a formalism in order to argue about them mathematically.
(Similarly, one needs to express an algorithm in a programming language in order to
execute it on a computer.)

Formal definition. Formally, a TM M is described by a tuple (�, Q, δ) containing:

• A finite set � of the symbols that M’s tapes can contain. We assume that � contains a
designated “blank” symbol, denoted �; a designated “start” symbol, denoted �; and
the numbers 0 and 1. We call � the alphabet of M.

• A finite set Q of possible states M’s register can be in. We assume that Q contains a
designated start state, denoted qstart, and a designated halting state, denoted qhalt.

2 Random access denotes the ability to access the ith symbol of the memory within a single step, without having
to move a head all the way to the ith location. The name “random access” is somewhat unfortunate since
this concept involves no notion of randomness—perhaps “indexed access” would have been better. However,
“random access” is widely used, and so we follow this convention this book.
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