When Professor Richards’ classic book first appeared in 1952, the tropical rain forests could be thought of as stretching endlessly over vast areas of the humid tropics, but now their nearly complete destruction is not far from realization. Over the years, ecological ideas have changed in many respects. The old notion of the stability of rain forest over long periods of time has been replaced by a dynamic concept of rain forests as kaleidoscopic mosaics continually reacting to climatic changes and human pressures.

The enormous growth of interest in tropical forests has led to an explosion of new data and ideas. This new and completely rewritten version provides a wide-ranging view of the field by one of the major contributors to our current understanding of rain-forest ecology. New chapters have been contributed on climate and microclimate by R.P.D. Walsh, and on soils of the humid tropics by I.C. Bullis, and there is an appendix on numerical methods in rain forest by P. Greig-Smith.

The new book will stand as a record of what the rain forest was like in the twentieth century.
The tropical rain forest
an ecological study
The tropical rain forest

an ecological study

Second edition

P.W. Richards
Emeritus Professor of Botany, University of Wales, Bangor

with contributions by

R.P.D. Walsh
Department of Geography, University of Wales, Swansea

I.C. Baillie
Environmental Consultant, Bedford

and P. Greig-Smith
Emeritus Professor of Botany, University of Wales, Bangor
To the memory of my friends

Carl Schroeter (1815–1939) whose *Pflanzenleben der Alpen* inspired me to write this book

and

Agnes Arber (1879–1960) to whose encouragement and constructive criticism it owes so much
Contents

Preface to the second edition xvii
Preface to the first edition xix
Acknowledgements xxi
Note on geographical names xxii

1 Introduction 7
 1.1 The biological spectrum of the rain forest
 1.2 Recent distribution
 The American rain forest 10
 The African rain forest 11
 The Indo-Malayan and Australian rain forest 12
 Potential and actual areas 12
 1.3 The tropical rain forest during the Tertiary and Quaternary periods
 Tertiary period 13
 Quaternary period 14
 1.4 The origin of the tropical rain forest and the evolution of angiosperms 18

I Structure and physiognomy 23
 2 Structure of primary rain forest
 2.1 The symtupe
 2.2 The forest mosaic 25
 2.3 Density and dispersion of trees 25
 2.4 Stratification 26
 2.4.1 Methods of studying stratification 27
 2.4.2 Structure of mixed rain forests
 Mixed forest at Morabilli Creek, Guyana 30
 Mixed dipterocarp forest, Gunung Dulit, Sarawak 34
 Mixed (evergreen seasonal) forest, Omo Forest Reserve, Nigeria 36
 Conclusions 37
 2.4.3 Structure of single-dominant forests 38
 2.4.4 Structure of mixed forests with tall emergents 43
 2.4.5 Structure of forests on slopes and river banks 43
CONTENTS

2.5 Quantitative aspects of stratification

2.5.1 Vertical distribution of tree heights and crowns

2.5.2 Leaf-area profiles

2.6 Ecological significance of stratification

3 Regeneration

3.1 Life-span of individual trees

3.2 Determination of tree age

3.3 Developmental phases

3.4 Formation of natural gaps

3.5 Seedling and seedling establishment

3.6 The building phase

3.7 Turnover rates

3.8 Growth and development

3.9 Size-class representation

3.10 Growth rates

3.11 Mortality

3.12 Audeville’s ‘Mosaic theory’

3.13 The role of chance in regeneration

4 Trees and shrubs: I. Vegetative features

4.1 Tree architecture

4.2 Bark

4.3 Root systems

4.4 Buttresses

4.5 Stem structures

4.6 Functional significance of buttresses and stilt-roots

4.7 Pneumophytes

4.8 Leaves of trees and shrubs

4.9 Leaf buds

4.10 Young leaves and leaf development

4.11 Leaf age

4.12 Leaf size and shape

4.13 Leaves of rheophytes

4.14 Drip-tips

4.15 Leaf joints

4.16 Leaf characteristics in relation to the rain-forest environment

5 Trees and shrubs: II. Reproductive biology

5.1 Vegetative reproduction

5.2 Reproduction by seed

5.2.1 Breeding systems

5.2.2 Pollination

5.3 Wind pollination

5.4 Animal pollination
CONTENTS

Pollination mechanisms xi
Foraging strategies of pollinators xii
Stratification of pollinators xiii
5.3 Seed dispersal xiv
Seed mass and dispersibility xiv
Seed shadows xiv
Dispersal and distribution patterns xv
5.4 Dormancy and germination xv
Seed banks xv
5.5 Cauliflory xv

6 Ground herbs and dependent synusiae xvi
6.1 Ground herbs xvii
6.2 Climbers xviii
6.2.1 Morphology and floristic composition xlix
6.2.2 Physiology li
6.2.3 Reproduction and development liii
6.2.4 Role in the ecosystem liv
5.3 Hemiepiphytes and 'stranglers' lixiv
5.4 Epiphytes lix
6.4.1 Family representation li
6.4.2 Origin of epiphytes li
6.4.3 Epiphytic habitats li
6.4.4 Morphology lii
5.4.5 Reproduction liii
5.4.6 Physiology liii
5.4.7 Epiphytes and ants liii
5.4.8 Effects of epiphytes on photophytes lvi
5.4.9 Abundance and biomass lvii
5.4.10 Vertical distribution lviii
5.4.11 Distribution on individual trees lix
5.4.12 Succession lx
5.4.13 Synecology lx
5.4.14 Microephiphytes lx
5.4.14.a Microephiphytes on trunks and branches lxix
5.4.14.b Epiphyllae lxix
5.5 Saprophytes lxx
5.6 Parasites lxxi

II The environment lxxii
7 Climatic (R.F.D. Walsh) lxxvii
7.1 Tropical rain-forest climates and their distribution lxxvii
A classification of tropical climates using climate diagrams and the perhumidity index lxxvii
7.1 Temperature lxxvii
Temperature and altitude and the Massenerhebung effect lxxvii
7.3 Solar radiation, sunshine and cloudiness lx
7.4 Rainfall lx
Rain-producing weather systems lx
Annual rainfall totals and their variability lx
Rainfall regimes lx
Rainfall intensity and frequency lx
Diurnal distribution lx
7.5 Humidity and evaporation lx

© Cambridge University Press www.cambridge.org
CONTENTS

7.6 Droughts and dry periods 189
 The Borneo drought of 1983–83 and its ecological impact 191
7.7 Lightning and fire 193
7.8 Wind and tropical cyclones 194
7.9 Climatic change 199
 Long-term climatic change 199
 Recent climatic change 200
7.10 Deforestation and climatic change 202

8 Microclimate and hydrology (R.P.D. Walsh)
8.1 General features of rain-forest microclimates 206
8.2 Solar radiation and light 206
8.3 Temperature 209
8.4 Relative humidity and saturation deficits 212
8.5 Wind and air movement 213
8.6 Carbon dioxide 213
8.7 Microclimates of canopy gaps and secondary forest 215
8.8 General hydrological features of rain-forest regions 217
8.9 Rainfall interception, throughfall and stemflow 217
 Throughfall 218
 Stemflow 218
 Interception 219
8.10 Transpiration 219
8.11 Evapotranspiration 226
8.12 Soil hydrology 227
8.13 Hydrological influences on nutrient movements and soil erosion in primary and disturbed rain forests 230
 Nutrient fluxes in undisturbed rain-forest areas 230
 Soil erosion in undisturbed rain-forest areas 233
 Effect of rain-forest disturbance on nutrient losses and erosion 233

9 Phenology
9.1 Leaf-change 238
 9.1.1 Leaf-change in rain-forest communities 238
 9.1.2 Leaf-change in individual species 241
 9.1.3 Leaf-change and stem growth 242
 9.1.4 Climate and leaf-change 243
 9.1.5 Leaf factors and leaf-change 244
 9.1.6 Role of external and internal factors in leaf-change 244
 9.1.7 Adaptive value and evolution of deciduous habit 246
9.2 Flowering and fruiting 247
 9.2.1 Flowering and fruiting of rain-forest communities 247
 9.2.2 Flowering of individual species 250
 9.2.3 Mass flowering 251
 9.2.4 Flowering of dipterocarps 252
 9.2.5 Monocarp 253
 9.2.6 Flowering and vegetative growth 253
 9.2.7 Fruiting 254

10 Soils of the humid tropics (I.C. Baillie)
10.1 General soil features and soil-forming processes 256
10.2 Soil classification and nomenclature 257
CONTENTS

10.3 Main soil groups of the humid tropics
 10.3.1 Kaolins
 10.3.2 Non-kaolins mature terra firme soils
 10.3.3 Immature terra firme soils
 Andosols
 Recent colluvial soils
 Recent alluvial soils
 Skeletal soils
 Shallow calcretes clays
 10.3.4 Poorly drained soils
 Freshwater gley soils
 Ferruginous semi-gley soils
 Saline gley soils and acid sulphate soils
 Peat
10.3.5 Montane soils
10.4 Edaphic characteristics of rain-forest soils
 10.4.1 Nutrient deficiencies
 10.4.2 Acidity and toxicities
 10.4.3 Rooting depth and moisture availability
 10.4.4 Aeration and drainage
 10.4.5 Mechanical support and site stability
10.5 Soil–forest interactions
 10.5.1 Nutrient scarcity and nutrient cycling
 Butt and stem rots
 Root distribution
 10.5.2 Adaptation to adverse soil moisture conditions
 10.5.3 Soil effects of undisturbed forests
10.6 Soils and forest disturbance
 10.6.1 Natural disturbances
 10.6.2 Soils and anthropogenic disturbances
 Logging
 Shifting agriculture
 Pastures
 Permanent cultivation

III Floristic composition of climax communities
11. Composition of primary rain forests: 1
 11.1 Species diversity
 11.1.1 Number of species
 11.1.2 Species richness and species diversity
 11.1.3 Theories of species richness and diversity
 11.2 Phytosociological analysis
 11.3 Primary rain-forest communities in Guyana
 11.3.1 Moraubali Creek
 Mora forest
 Morabukai forest
 Mixed forest
xiv CONTENTS

Greensheart forest 300
Wallaba forest 300
Comparison of communities 302
11.3.2 Twenty-four Mile Reserve 302
11.4 Primary rain-forest communities in Borneo 304
Mixed dipterocarp forest 304
Heath forest 305

12 Composition of primary rain forests: II

12.1 Mixed rain forests 308
 12.1.1 Geographical distribution of taxa 309
 Families and family dominance 309
 12.1.2 Species distribution 311
 12.1.3 Variations in composition of mixed forests 313
 Large-scale variations 313
 Small-scale variations 314
 The Rio Guama Research Area 314
 Dispersion patterns 314
 Ordination studies 317

12.2 Heath forests 320
 South American heath forests 321
 Heath forests in the eastern tropics 324
 Physiological ecology of heath forests 326

12.3 Single-dominant forests in the Neotropics and Malesia 328

12.4 Single-dominant forests in tropical Africa 331
 Gilbertiodendron deweirei association 331
 Brachystegia laurentii association 332
 Cynometra alexandrae association 334

12.5 Forests on limestone 334
12.6 Forests on ultrabasic rocks 335
12.7 Relation of mixed and single-dominant communities 337

IV Primary successions

13 Primary xeroeuees and the recolonization of Krakatau 341
 13.1 The recolonization of Krakatau 341
 History of the vegetation 1883–1932 341
 History of the vegetation 1932–84 345
 The plant successions 346
 Species immigration and dispersal 348
 Changes in the environment 349

13.2 Other xeroeuees 349

14 Hydroseres and freshwater swamp forests 353
 14.1 Hydroseres and swamp forests in tropical America 353
 14.1.1 Central America, Guyana, etc. 353
 14.1.2 Swamp forests and successions in Amazonia 354
 Estuarine region 354
 Upper and lower Amazon 355
 Ringing vegetation of the blackwater rivers 358

 14.2 Hydroseres and swamp forests in tropical Africa 359
 14.2.1 West Africa 360
 14.2.2 The Zaire (Congo) Basin 361
CONTENTS

14.1 Hydroswamps and swamp forests in the eastern tropics
364
New Guinea
364
14.4 Moor forests (peat swamps) of Malesia
365
15 Mangroves and other coastal vegetation

15.1 Mangrove vegetation (mangal)
372
15.1.1 Characteristics of mangroves
373
15.1.2 Mangrove communities
375
15.1.3 Zonation and succession of mangrove communities
376
Florida and tropical America
376
Mangal in West Africa
378
Mangal in Malesia and Australia
379
15.2 Vegetation of sandy shores
383
Pacific and Indian oceans
383
Atlantic ocean
385

V Tropical rain forest under limiting conditions

16 Rain forest, deciduous forest and savanna

16.1 Classification and definitions
389
16.2 Rain forest, deciduous forest and savanna in tropical America
393
16.2.1 Forest types of Trinidad
393
Lower montane rain forest
394
Evergreen seasonal forest
394
Semi-evergreen seasonal forest
394
Deciduous seasonal forest
394
Thorn woodland
395
Cactus scrub
395
16.2.2 Savannahs in Trinidad and northern South America
395
16.2.3 Forest and savanna in Amazonia
397
16.2.4 Ecological status of tropical American savannas
401
16.3 Rain forest, monsoon forest and savanna in the eastern tropics
403
16.3.1 Rain forest and monsoon forest
403
16.3.2 Savannahs in the eastern tropics
404
16.4 Forest and savanna in Africa
405
16.4.1 Climatic ecoregions in West Africa
406
The closed forest zone
406
The Guinea zone
406
The Sudanian zone
408
The Sahel zone
408
Sahara zone
408
16.4.2 Gradients within the closed forest
408
16.4.3 Ordination studies
409
16.4.4 The closed forest – savanna boundary in West Africa
412
16.4.5 Changes in the forest – savanna boundary
414
16.4.6 Forest and savanna in central Africa
414
16.4.7 Climax vegetation of African savanna areas
415
The role of fire
415
Fire protection experiments
416
16.5 Conclusions
417

17 The tropical rain forest at its altitudinal and latitudinal limits

17.1 Altitudinal zonation in the humid tropics
419
CONTENTS

17.1 Zonation in the mountains of Malesia 422
 Zonation in New Guinea 422
 Zonation in western Malesia 426
17.1.2 Montane rain forests in tropical America 435
 Zonation in the Andes 435
 Lowland and montane rain forests in Costa Rica 438
 Coastal ‘cloud forests’ in northern South America 439
 Montane rain forests in the Caribbean islands 439
17.1.3 Montane rain forests in tropical Africa 443
 Zonation in East Africa 443
 Zonation in West Africa 446
17.2 Tropical rain forest at its latitudinal limits 449
 Rain forests of Australia 449
 Comparison of rain forest at its altitudinal and latitudinal limits 453

VI Human impacts and the tropical rain forest
18 Secondary and deflected successions 457
 18.1 General features of secondary rain forests 460
 18.2 Characteristics of secondary rain-forest trees 462
 Geographical range and origin of the secondary forest flora 467
18.3 Observations on secondary successions 468
 18.3.1 Secondary and deflected successions in Africa 468
 Successions in Nigeria 468
 Secondary successions in Ghana 470
 Secondary successions elsewhere in West Africa 471
 Deflected successions in West Africa 471
 Secondary and deflected successions in Zaire 472
18.3.2 Secondary and deflected successions in tropical America 473
 Successions in clearings in Surinam 473
 Successions on clay soils in Amazonia 474
 Successions on Amazonian podzols 476
 Deflected successions in Amazonia 477
 Secondary successions in Central America and the West Indies 477
18.3.3 Secondary and deflected successions in Malesia 478
 Secondary successions in Malaya 478
 Secondary successions in Borneo 480
 Secondary successions in the Philippines 483
18.4 General features of secondary successions in lowland rain forest 485

19 Postscript: the future of the tropical rain forest 487

Appendix 1. Tree recognition in the field and the use of vernacular names 495

Appendix 2. Application of numerical methods in rain forest (P. Greg-Smith) 497
 Introduction 497
 Characteristics of rain forest affecting the use of numerical methods 497
 Data collection 498
 Analysis of survey data 500
 Vegetational change 501
 Pattern 501

References 503
Index of plant names 543
General index 559
Preface to the second edition

The publication of the first edition of this book in 1952 was followed by reprints in 1953, 1964, 1966, 1972 and 1976 and a paperback edition in 1979. All of them included small corrections and additions, but none was fully revised. The present edition is virtually a new book as it has been completely rewritten: very little of the original text remains. The short section of Chapter 4 on the flowers and fruits of rain-forest trees has been expanded into a new chapter and the chapters on climate, microclimates and soil conditions have been replaced by entirely new chapters, the first two by Dr R.P.D. Walsh, the third by Dr Ian C. Baillie. Two appendices, the first on tree species recognition in the field, and the second (by Professor F. Greig-Smith) on quantitative methods in rain forest ecology, have been added.

Since The tropical rain forest first appeared, knowledge of rain-forest ecology has grown enormously. Interest in tropical forests has also spread among the scientific and wider public throughout the world. The term ‘tropical rain forest’ itself, which was once familiar only to professional botanists and foresters, is now seen in newspapers and popular magazines and heard almost daily on radio and television. At the same time the scientific literature on the ecology of rain forests has increased so rapidly that it is hardly possible any more for a single individual to keep abreast of it.

But even more important than the transformation in human awareness and attitudes to tropical rain forests is the change in the forests themselves. Up to the middle of this century they could still be thought of as stretching endlessly over vast areas of the humid tropics, but now their nearly complete destruction, foretold in the first edition of this book, is not far from realisation. Only relatively small areas remain where the natural forest has not been replaced by farms, plantations and secondary vegetation. Though the forest at Moraballi Creek, Guyana, which formed much of the subject matter of Edition 1 still stood in 1972 more or less as it was in 1929, many of the other areas referred to have been altered so much as to be no longer recognisable. Fortunately, owing to the efforts of some enlightened governments, the World Wide Fund for Nature, and other organizations, a few rain-forest areas are being conserved, but there is an urgent need for much more to be done.

The pace of change in both rain-forest ecology and the forests themselves has made the writing of this new Tropical rain forest a long and difficult task. The ever-expanding bulk of literature has made it impossible to cover the field to the extent which was possible in 1952. Like its predecessor, the present book does not aim to be encyclopaedic. What has been put in and what left out reflects the author’s experience and particular interests. Some branches of rain-forest ecology have been dealt with in cavalier fashion, for example productivity and biomass, not because they have been judged unimportant, but because the author feels ill-equipped to discuss them. Some subjects, for example mangrove ecology, are now very adequately dealt with in other books and do not need to be treated at length here. On conservation, vitally important though it is, only a short Postscript (Chapter 19) has been given; a full discussion would have greatly increased the size of the book. It has been impossible to deal adequately with the role of animals in rain-forest ecosystems; the book has had to be written (as one of its critics has said) from ‘a botanist’s point of view’.

Since 1952 ecological ideas, including the author’s,
PREFACE TO SECOND EDITION

have changed in many respects. The old notion of the
stability of rain forests over long periods of time has
been replaced by a dynamic concept of rain forests as
kaliedoscopic mosaics continually reacting to climatic
changes and human pressures. The rather rigid concept
of rain-forest structure and stratification of Edition 1
has become less formal.

This book will, I hope, be regarded as a record of
what the tropical rain forest was like in the twentieth
century. Revising a book originally published forty years
ago is like renovating an old building; the facade may
retain something of its old appearance, but it is hoped
that the interior has been sufficiently modernized to be
still serviceable.

P.W. Richards
Cambridge
Preface to the first edition

The scope of ecology is not easy to define—it has even been said that the only definition of ecology is that it is the subject-matter of the Journal of Ecology. In writing a book about the ecology of the Tropical Rain forest I have therefore had to decide for myself what was and what was not relevant to my theme; in this I have been influenced, no doubt, by my own particular whims and prejudices.

Because ecology is a synthetic science, embracing or touching many other disciplines, it has been my ambition to interest many who are neither botanists nor foresters—zoologists, geographers, in fact anyone who is concerned with the rain forest as a plant community or an environment. I have dealt scarcely at all with the economic aspects of my subject; my aim has been to provide a basis for future work, whether 'pure' or 'applied'. Because I hope the book will be of use to those not trained as professional botanists, I have tried to make the text as self-explanatory as possible and to avoid unnecessary technical terms.

No general account of the Tropical Rain forest has been written since A.F.W. Schimper published his great Plant Geography (1898; English edition, 1903), which has since been revised and expanded by Prof. F.C. von Faber (1933). My main qualification for such a formidable task is first-hand experience of rain-forest vegetation adding up to nearly two years. At this experience, though short, was very intensive, and as I had the unusual good fortune to visit each of the three chief tropical regions—South America, Africa and Malaya—within a space of seven years, this qualification is perhaps not as painfully inadequate as it appears. The great development of interest in tropical vegetation during the last fifteen years has given rise to a voluminous and very scattered literature. In writing the book I have endeavoured to make full use of this, but much has had to be deliberately neglected and still more has probably been unintentionally overlooked.

In a work of this kind it is inevitable that many statements will prove to be wrong, and in some places the facts may prove to have been misinterpreted. These shortcomings may not matter if the book stimulates further work. In my travels I have been impressed by the large amount of valuable ecological information which exists unpublished in the minds and notebooks of foresters and buried in departmental reports; I hope the publication of this book may coax some of these data from their hiding places. Much valuable information has been obtained from letters from various friends; the source of such data is indicated in the text by the name of my correspondent in brackets without date. In every chapter I have tried to point out the chief gaps in present knowledge and to suggest lines for future work. No better prospect for my work can be wished than that it may soon become out of date.

Many ecologists would agree that their science is not yet ripe for a rigid theoretical framework, but since a theoretical background of some kind is necessary, the general principles of the Anglo-American school of ecologists have been followed. The absence of a chapter on biotic factors is due, not to a failure to realize their importance, but to the lack of a sufficient body of suitable data.

Part of the matter in the book has appeared in a series of papers published from 1933 onwards. As might be expected, I have since modified some of the views and interpretations given in those papers.
XX

PREFACE TO FIRST EDITION

With regard to the nomenclature of species, it is obvious that in a work of this kind, in which names are quoted from papers and books dealing with the flora or vegetation of many different countries, the author cannot answer for the correctness of every name used, though the nomenclature has been checked as far as time and opportunity have allowed. I am much indebted to various members of the staff of the Kew Herbarium for helping me in this part of the work. Where information has been taken from published books or papers the names given here are not always those used in the original, but some synonyms will be found in the Index of Plant Names. In a few instances names of plants in the text have been placed in inverted commas; this indicates that the validity of the name or the correct citation is doubtful.

I could not have written a general account of the tropical rain forest without the help of many kind friends. Though it is impossible to acknowledge individually the help of all who have provided data, references to literature, or who have assisted in other ways, a word of special thanks is due to Dr Agnes Ather, F.R.S., who has given me much valuable advice on matters of presentation and has read and criticized a large part of the manuscript. Also to Sir Edward Salisbury, C.B.E., F.R.S., whose help in planning the book was invaluable; it was also a suggestion of his that gave rise to the ‘profile-diagram’ technique which has proved such a useful tool in the study of tropical vegetation. Special thanks for help of various kinds are also due to Dr J.S. Beard, Prof. H.G. Champion, Dr E.M. Chewny, Mr E.J.H. Corner, Mr T.A.W. Davis, Dr G.C. Evans, Mr P.J. Greenway, Prof. F. Hardy, the late Mr A.P.D. Jones, Mr R.W.J. Keay, Prof. J. Lebrun, Prof. G. Manley, Mr R. Ross, Dr C.G.G.J. van Steenis, Mr C. Swabey, Prof. J.S. Turner, Prof. T.G. Tutin, and Dr Frans Verbom. A word of gratitude is also due to the librarians of several libraries who have assisted me in searching for literature, especially the Librarian of the Imperial Forestry Institute, Oxford. For permission to reproduce figures and photographs, I have to thank Dr J.R. Baker, Dr J.S. Beard, Mr W.J. Eggling, Dr G.C. Evans, Dr E.W. Jones, Prof. F.W. Wens, the Director of the Musée Royale d’Histoire Naturelle de Belgique, the Editor of the Bulletin du Jardin Botanique de Buitenzorg, the Forestry Department, Malayan Union and the Editor of the Journal of Ecology. Lastly, I am indebted to my wife for much help, especially in preparing the indexes.

P.W. Richards

Botany School, Cambridge

August 1928
Acknowledgements

In addition to the three contributors named on the title page, I am grateful to a great many friends and colleagues all over the world who have helped me with information, sent me reprints of their papers and allowed me to reproduce their figures or photographs. I am especially indebted to Dr Paul Adam, Professor P.S. Ashton, Professor D.A. Jansen, Dr Michael Lock, Professor C.T. Prance, Professor Richard E. Schultes, Professor Len Webb, Dr T.C. Whitmore and Dr R.J. Whittaker, who have criticized parts of the book and helped me in other ways. Dr Sean Edwards has given me much valuable advice on photography as well as drawing several of the figures. A special word of thanks is due to Mrs Wendy Whitmore for the immense trouble she has taken in typing the lists of references and plant names. Roy Percy has given me invaluable help with proofreading. Lastly I owe very much to the support and patience of my wife who, as well as compiling the lists of references and plant names, has endured all the deprivations and inconveniences that writing the book has involved.

I thank the Royal Society and the Tansley Fund of the New Phytologist Trust for contributing to the cost of typing the manuscript.
Note on geographical names

The geographical names used in this book are, with a few exceptions, those in The Times Atlas of the World, seventh comprehensive edition (Times Books, London, 1985). 'Tropical America' is used for Central and South America. 'Malaysia' is used for the Malay Peninsula and Malay Archipelago, including New Guinea and the Philippines, as in Flora Malesiana (Nijhoff, The Hague, 1948–). To avoid tedious repetition, 'Malaya' is used for the Malay Peninsula (Peninsular Malaysia plus Singapore).
Most studies of vegetation have been carried out in Europe, and I am of the opinion that owing to a paucity of material these investigations have begun with an inverted viewpoint. When studying the manifold types of vegetation, comparing them and relating them to each other, one ought logically to start with the richest and to derive from it the less complicated, impoverished types which have arisen from it by selection. The richest type of vegetation in number of species, volume and density, is found in the tropics. It is not the impoverished anthropogenic vegetation of Europe which should be the starting-point of one’s investigations.

C.G.G.J. VAN STEENIS (1937, transl.)