THREE-DIMENSIONAL INTEGRATED CIRCUIT LAYOUT
Distinguished Dissertations in Computer Science

Edited by
C. J. Rijsbergen, University of Glasgow

The Conference of Professors of Computer Science (CPCS), in conjunction with the British Computer Society (BCS), selects annually for publication up to four of the best British PhD dissertations in computer science. The scheme began in 1990. Its aim is to make more visible the significant contribution made by Britain – in particular by students – to computer science, and to provide a model for future students. Dissertations are selected on behalf of CPCS by a panel whose members are:

C. A. R. Hoare, University of Oxford
R. J. M. Hughes, University of Glasgow
R. Milner, University of Edinburgh (Chairman)
R. Needham, University of Cambridge
M. S. Paterson, University of Warwick
S. Randell, University of Newcastle
A. Sloman, University of Sussex
F. Sumner, University of Manchester
THREE-DIMENSIONAL INTEGRATED CIRCUIT LAYOUT

ANDREW HARTER
Corpus Christi College
University of Cambridge

CAMBRIDGE UNIVERSITY PRESS
Cambridge
New York Port Chester Melbourne Sydney
Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP
40 West 20th Street, New York, NY 10011, USA
10 Stamford Road, Oakleigh, Victoria 3166, Australia

© Cambridge University Press 1991

First published 1991

Printed in Great Britain at the University Press, Cambridge

Library of Congress cataloguing in publication data available

A catalogue record for this book is available from the British Library

ISBN 0 521 41630 2
To my parents
Abstract

Some recent developments in semiconductor process technology have made possible the construction of three-dimensional integrated circuits. Unlike other technological developments in two-dimensional integration, these circuits present a new and inherently richer connection topology. This offers the potential for improved layout in terms of increased density and reduced interconnect length. These circuits will be difficult and expensive to manufacture, at least in the short term, and the scale of the improvement in layout is not apparent. This dissertation presents a discussion of layout and design for three-dimensional integrated circuits.

A number of materials and techniques can be used in the manufacture of such circuits. This choice has a profound bearing on the topology of circuit layout. A classification relating process technology to layout topology is developed and illustrated with the design of a number of circuits. A layout system is presented as the vehicle for a series of experiments in three-dimensional layout. It is shown that the system can be constrained to perform circuit layout in a number of topologies in the classification.

Finally, some attempt to quantify the benefits of three-dimensional layout is made. The layout model is calibrated by designing examples of basic circuit elements. This is done using a set of design rules corresponding to a proposed three-dimensional process technology. Circuit layouts produced by the system are compared with conventional two-dimensional layouts, and the variation in layout quality as a function of the three-dimensionality of a layout is explored.
Preface

I am indebted to my supervisor, Andy Hopper, for his encouragement and support. He first introduced me to the topic of computer aided design of integrated circuits when I was an undergraduate, and has been a source of guidance ever since. I am also indebted to Roger Needham for extending the facilities of the Computer Laboratory. I am grateful that both Andy and Roger have demonstrated quite remarkable patience. The Science and Engineering Research Council provided funding for three years for which I am thankful.

Of the many people who have been a source of help, I would particularly like to thank David Wheeler for a number of stimulating discussions, and Haroon Ahmed of the Microcircuit Engineering Laboratory for introducing me to the technology of three-dimensional circuits. Alan Mathewson and Ciaran Cahill, of the National Microelectronics Research Centre, University College, Cork, have contributed to my further understanding of the technological possibilities. Elements of the systems used in the case study described in chapter two were developed by myself, Jeremy Dion, Alan Jones, Tony Mann, Trevor Morris, John Porter, Peter Robinson and Chris Stenton. I would like to thank Tony Mann and John Porter for reminding me about the details of the placement and routing schemes.

Chris Stenton and Steve Temple have contributed many helpful suggestions particularly in the experimental stages and were diligent proof readers, as were Tim Cole and David Greaves. I am grateful for their suggestions for improvements.

This dissertation is the result of my own work and is not the outcome of any work done in collaboration. I declare that this dissertation is not the same as any other dissertation I have submitted for a degree, diploma or other qualification at any university. Furthermore, no part of this dissertation has been or is currently being submitted for any such qualification.
Contents

List of Figures .. xix
List of Plates ... xxiii
List of Tables ... xxv
List of Algorithms ... xxvii
Glossary of Terms ... xxix

1 Introduction ... 1
 1.1 Thesis aims ... 1
 1.2 Thesis structure .. 2
 1.3 Two-dimensional chip technology 3
 1.3.1 A brief history of integration 3
 1.3.2 A fabrication sequence 5
 1.4 Trends in integration 7
 1.4.1 Faster and denser circuits 7
 1.4.2 Enhanced processing 8
 1.4.3 Alternative materials 9
 1.4.4 Mixed technologies 10
 1.4.5 Wafer-scale integration 11
 1.4.6 Multichip modules 12
 1.4.7 Assumptions 13

2 Two-Dimensional Chip Design 15
 2.1 Abstraction and automation 15
 2.1.1 Goals ... 15
 2.1.2 Axioms ... 16
 2.1.3 Rules .. 16
 2.2 Implementation schemes 18
CONTENTS

2.2.1 Imposing geometric constraints 18
2.2.2 Custom ... 18
2.2.3 Standard cell ... 19
2.2.4 Gate array ... 20
2.2.5 Field-programmable devices .. 21
2.2.6 Comparisons ... 22

2.3 A descriptive framework .. 23
2.3.1 Hierarchies of abstraction ... 23
2.3.2 A framework ... 24
2.3.3 Manipulation ... 24
2.3.4 Translation ... 26

2.4 Case study ... 28
2.4.1 A network controller .. 28
2.4.2 Gate array implementation .. 29
2.4.3 Standard cell implementation 31

3 Three-Dimensional Chip Technology 35
3.1 Isolation techniques ... 35
3.1.1 Introduction ... 35
3.1.2 Epitaxy ... 36
3.1.3 Wafer bonding ... 37
3.1.4 Recrystallisation .. 38

3.2 Three-dimensional structures ... 39
3.2.1 Hybrid structures .. 39
3.2.2 Multi-layer wiring .. 40
3.2.3 Monolithic structures ... 41
3.2.4 Memory applications .. 43

3.3 Benefits .. 44
3.3.1 High density .. 44
3.3.2 Improved layout ... 46
3.3.3 High speed ... 46

3.4 Drawbacks ... 47
3.4.1 Introduction .. 47
3.4.2 Materials ... 47
3.4.3 Yield ... 48
3.4.4 Interference .. 49
3.4.5 Heat dissipation .. 50

4 Three-Dimensional Circuit Topology 53
4.1 Wiring schemes .. 53
CONTENTS

4.1.1 Introduction ... 53
4.1.2 Contact techniques ... 54
4.1.3 Intra-layer wiring ... 54
4.1.4 Inter-layer wiring ... 55
4.1.5 Power wiring .. 56
4.2 A classification .. 56
4.2.1 Three factors ... 56
4.2.2 Group A: \(C = 1, T_C = 1 \) 58
4.2.3 Group B: \(C = 1, T_C > 1 \) 58
4.2.4 Group C: \(C > 1, T_C = 1 \) for all \(0 < c \leq C \) 59
4.2.5 Group D: \(C > 1 \) ... 60
4.3 Design methods .. 60
4.3.1 Custom .. 60
4.3.2 Standard cell ... 61
4.3.3 Gate array ... 62
4.4 How many layers? .. 64
4.4.1 Layout shapes .. 64
4.4.2 An upper bound .. 64
4.5 Other work ... 66
4.5.1 Theoretical .. 66
4.5.2 Practical .. 69

5 Three-Dimensional Cell Tessellation 71
5.1 Layout by abutment ... 71
5.1.1 Introduction ... 71
5.1.2 Smaller wiring spaces 72
5.1.3 Basic abutment principles 72
5.2 Abutting cell shapes .. 74
5.2.1 Solid tessellation ... 74
5.2.2 Platonic solids ... 74
5.2.3 Archimedean solids 75
5.2.4 Pyramids .. 75
5.2.5 Prisms ... 77
5.3 Layout examples ... 77
5.3.1 Grid equivalence ... 77
5.3.2 Equilateral triangle based prisms 79
5.3.3 Cubes ... 80
5.3.4 Hexagon based prisms 82
5.4 Layout methods ... 83
5.4.1 Forming abutments 83
| CONTENTS |
|------------------|-----|
| 5.4.2 Routing space | 84 |
| 5.4.3 Relationship to other methods | 85 |
| 5.5 Extensions to the basic scheme | 86 |
| 5.5.1 Additional connectivity | 86 |
| 5.5.2 Representation of tessellating cells | 87 |
| 5.6 Cell library generation | 88 |
| 5.6.1 Assumptions | 88 |
| 5.6.2 Cell functionality | 89 |
| 5.6.3 Internal cell layout | 89 |
| 5.7 Cell design | 90 |
| 5.7.1 Design criteria | 90 |
| 5.7.2 Design rules | 91 |
| 5.7.3 A layout editor | 93 |
| 5.7.4 Cube cells | 93 |

6 Three-Dimensional Abutment System

6.1 Introduction | 99
6.1.1 Outline | 99
6.1.2 Experimental requirements | 99

6.2 Circuit representation | 101
6.2.1 Hardware description language | 101
6.2.2 Nodes | 101
6.2.3 Signals | 102
6.2.4 Contacts | 102

6.3 Cell representation | 103
6.3.1 Cells | 103
6.3.2 Rules | 103

6.4 Layout representation | 105
6.4.1 Clusters | 105
6.4.2 Growths | 107
6.4.3 Ports | 110
6.4.4 Interfaces | 111
6.4.5 Segments | 111
6.4.6 Capacity | 112

6.5 Placement | 113
6.5.1 Basic procedure | 113
6.5.2 Search space | 113
6.5.3 Merit functions | 114
6.5.4 Update sequence | 116
6.5.5 Blockages | 116
CONTENTS

6.6 Routing .. 118
 6.6.1 Routing space .. 118
 6.6.2 Basic procedure 119
 6.6.3 Signal choice ... 120
6.7 Control and validation 121
 6.7.1 Layout control 121
 6.7.2 Layout validation 122
 6.7.3 Process control 122

7 Abutment System Configuration 123
 7.1 Overview ... 123
 7.1.1 Aims ... 123
 7.1.2 Methods ... 124
 7.1.3 Metrics .. 124
 7.2 Merit functions 125
 7.2.1 Assumptions 125
 7.2.2 Connection merit 126
 7.2.3 Node connectivity 128
 7.2.4 Merging signals 129
 7.2.5 Cluster shaping 131
 7.2.6 Cluster binding 132
 7.2.7 Segment guarantees 133
 7.2.8 Routing .. 134
 7.2.9 Remarks ... 135
 7.3 Algorithm control 136
 7.3.1 Routing space 136
 7.4 Perfect layouts 138
 7.4.1 Ideal behaviour 138
 7.4.2 Perfect examples 138
 7.4.3 Lookahead 139
 7.4.4 Orthogonally connected circuits 140
 7.4.5 Random circuits 142
 7.5 A layout example 142

8 Abutment System Evaluation 145
 8.1 Introduction ... 145
 8.1.1 Aims ... 145
 8.1.2 Methods ... 146
 8.1.3 Computational cost 146
 8.2 Cell variations 149
CONTENTS

8.2.1 Twelve connection cells .. 149
8.2.2 Improved layout .. 150
8.3 Vertical scaling ... 153
 8.3.1 Scaling after layout .. 153
 8.3.2 Scaling during layout 154
8.4 How many layers? .. 156
 8.4.1 Rationale ... 156
 8.4.2 Active layers .. 157
 8.4.3 Passive layers ... 158
 8.4.4 Yield estimates ... 160
8.5 Comparison with conventional layout 162
 8.5.1 Introduction .. 162
 8.5.2 Standard cell CFR layout 163
 8.5.3 Three-dimensional CFR layout 163
 8.5.4 Comparison .. 164
 8.5.5 Discussion .. 165

9 Conclusions ... 169
 9.1 Review .. 169
 9.1.1 Aims ... 169
 9.1.2 Preliminary research 170
 9.1.3 Primary research ... 170
 9.1.4 Experimental results 171
 9.2 Further work .. 173
 9.2.1 Cell design .. 173
 9.2.2 Algorithm improvement 174
 9.2.3 Broader contexts ... 174
 9.2.4 Other techniques 174
 9.3 Summary ... 175

A Layout Editor Configuration 177

B Layout System Data Structures 183

C Cell Description Rules ... 187
 C.1 Cube .. 187
 C.2 Hexagon based prism 188
 C.3 Equilateral triangle based prism 188

D Circuits .. 189
 D.1 Configuration circuits 189
CONTENTS

D.2 Evaluation circuits .. 189

References .. 193

Index .. 203
List of Figures

1.1 A simple fabrication sequence for a MOS transistor 6
1.2 Problems with small geometry transistors 9

2.1 An example of ‘αβ’ design rules 17
2.2 A framework of design automation abstractions 25
2.3 Inefficiencies of fixed-site gate arrays 30

3.1 Isolated circuits ... 36
3.2 Seeded lateral epitaxy .. 37
3.3 Wafer bonding ... 38
3.4 A three-dimensional wafer stack 40
3.5 Three-dimensional structures .. 42
3.6 A multi-function three-dimensional structure 43
3.7 Layout of a half-adder circuit in two- and three-dimensional grids 45
3.8 Cooling channels ... 51

4.1 Butting contacts ... 54
4.2 Buried contacts ... 55
LIST OF FIGURES

4.3 Three-dimensional power distribution .. 57
4.4 Floor plans .. 61
4.5 Vertical routing channels .. 62
4.6 Three-dimensional gate arrays ... 63
4.7 An eight-rearrangeable permutation network 67
4.8 A two-dimensional projection of a three layer grid 68
4.9 Transistor level notations ... 70

5.1 Tessellating solids .. 76
5.2 The cube equivalent grid ... 78
5.3 The hexagon prism equivalent grid 78
5.4 Equilateral triangle based prisms ... 79
5.5 Shift register constructed from prisms 80
5.6 Right-angle triangle prism tessellations 81
5.7 A set-reset latch circuit ... 81
5.8 Two- and three-dimensional layouts of a set-reset latch 82
5.9 Set-reset latch constructed from hexagons 83
5.10 Topology of modified cube abutment (1) 87
5.11 Topology of modified cube abutment (2) 88
5.12 Frequency versus % area utilisation for three libraries of cells 89
5.13 Vertical connection model ... 92
5.14 The power supply mesh of one layer of abutting cells 94
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Elements of circuit representation</td>
<td>102</td>
</tr>
<tr>
<td>6.2</td>
<td>Topology rules for cube shaped cells</td>
<td>104</td>
</tr>
<tr>
<td>6.3</td>
<td>Incongruous layout patterns</td>
<td>106</td>
</tr>
<tr>
<td>6.4</td>
<td>Compact cluster growth</td>
<td>108</td>
</tr>
<tr>
<td>6.5</td>
<td>Dendral cluster growth</td>
<td>108</td>
</tr>
<tr>
<td>6.6</td>
<td>Cluster growth of equilateral-prism shaped cells</td>
<td>110</td>
</tr>
<tr>
<td>6.7</td>
<td>Representation of the cell interface</td>
<td>112</td>
</tr>
<tr>
<td>6.8</td>
<td>Interface permutations</td>
<td>114</td>
</tr>
<tr>
<td>6.9</td>
<td>Blocked signals</td>
<td>117</td>
</tr>
<tr>
<td>6.10</td>
<td>A simple routing channel</td>
<td>119</td>
</tr>
<tr>
<td>7.1</td>
<td>Variance in total signal length for (a) random and (b) connection weighted circuit layout</td>
<td>127</td>
</tr>
<tr>
<td>7.2</td>
<td>Effect of connection weighting</td>
<td>128</td>
</tr>
<tr>
<td>7.3</td>
<td>Effect of input/output connection weighting</td>
<td>129</td>
</tr>
<tr>
<td>7.4</td>
<td>Effect of node connectivity weighting</td>
<td>130</td>
</tr>
<tr>
<td>7.5</td>
<td>Effect of encouraging over the cell wiring</td>
<td>131</td>
</tr>
<tr>
<td>7.6</td>
<td>Effect of cluster shaping</td>
<td>132</td>
</tr>
<tr>
<td>7.7</td>
<td>Effect of cluster binding</td>
<td>133</td>
</tr>
<tr>
<td>7.8</td>
<td>Effect of choosing segment guarantee location</td>
<td>134</td>
</tr>
<tr>
<td>7.9</td>
<td>Effect of signal length preference during routing</td>
<td>135</td>
</tr>
<tr>
<td>7.10</td>
<td>Effect of concentric shell thickness</td>
<td>136</td>
</tr>
<tr>
<td>7.11</td>
<td>Effect of interspersing routing shells</td>
<td>137</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

7.12 Lookahead for placement choice 140
7.13 Effect of lookahead 141
7.14 System behaviour with orthogonally connected circuits 142
7.15 Signal distributions from a circuit layout 143
7.16 The signal paths in a three-dimensional layout 144
8.1 Computation cost of abutting layouts 148
8.2 Comparison of layout with different libraries of cell 150
8.3 Effect of vertical scaling applied retrospectively 154
8.4 Effect of vertical scaling during routing 155
8.5 Effect of vertical scaling during placement 156
8.6 Effect of adding layers of active cells 157
8.7 Effect of adding layers of passive cells 159
8.8 CFR block layout 165
8.9 CFR block layout utilising flip-flop cells 167
A.1 The relationship between layers in a configuration file for a three-dimensional CMOS SOI process 178
List of Plates

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Five input NAND with X-axis output</td>
<td>95</td>
</tr>
<tr>
<td>5.2</td>
<td>Five input NAND with Z-axis output</td>
<td>95</td>
</tr>
<tr>
<td>5.3</td>
<td>Five input NAND with Y-axis output</td>
<td>96</td>
</tr>
<tr>
<td>5.4</td>
<td>A six connection worst-case wiring cell</td>
<td>96</td>
</tr>
<tr>
<td>8.1</td>
<td>A twelve connection worst-case wiring cell</td>
<td>151</td>
</tr>
<tr>
<td>8.2</td>
<td>Five input NAND with two connections per face and crossed wiring</td>
<td>151</td>
</tr>
<tr>
<td>8.3</td>
<td>Five input NAND with two connections per face feeding through</td>
<td>152</td>
</tr>
<tr>
<td>8.4</td>
<td>Five input NAND with two connections per face and multiple outputs</td>
<td>152</td>
</tr>
</tbody>
</table>
List of Tables

5.1 The five Platonic solids ... 74
5.2 Analysis of a library of cuboid cells with one connection per face ... 91
5.3 Lambda-based CMOS SOI design rules 92
5.4 Layout colour codes ... 93
7.1 Cell count for adder and set-reset latch circuit layout 139
7.2 Proportion of imperfect to perfect layouts 141
8.1 Projected three-dimensional yield, $D(c) = 1$ 161
8.2 Projected three-dimensional yield, $D(c) = 0.5$ 161
8.3 Projected three-dimensional yield, $D(c) = 0.5/c$ 161
8.4 CFR logic block sizes in two libraries 164
D.1 Twenty circuits used during system configuration 190
D.2 Twenty additional circuits used during layout evaluation 191
List of Algorithms

6.1 To force compact cluster growth 107
6.2 To allow dendral cluster growth 109
8.1 Simplified placement algorithm 147
Glossary of Terms

The number of the page on which the term is introduced appears in parentheses after each term.

FET Field-effect transistor (4).
MOS Metal-oxide-semiconductor (4).
NMOS n-type metal-oxide-semiconductor (4).
PMOS p-type metal-oxide-semiconductor (4).
CMOS Complementary-metal-oxide-semiconductor (5).
CAD Computer-aided design (5).
SRAM Static random-access memory (5).
DRAM Dynamic random-access memory (11).
SSI Small-scale integration (11).
MSI Medium-scale integration (11).
LSI Large-scale integration (11).
VLSI Very-large-scale integration (11).
WSI Wafer-scale integration (11).
FIFO First-in first-out (20).
HDL Hardware Description Language (24).
GLOSSARY OF TERMS

CFR Cambridge Fast Ring (28).

ASIC Application Specific Integrated Circuit (29).

SOI Silicon on insulator (35).

CVD Chemical Vapour Deposition (38).