REFERENCES AND CITATION INDEX

Page numbers in square brackets at the ends of references indicate citations in the text.

1982. Migration paths through time and space. Hodder & Stoughton: London. [Pp. 57, 60, 61, 62, 63, 64, 65, 66]

REFERENCES AND CITATION INDEX

REFERENCES AND CITATION INDEX

171
REFERENCES AND CITATION INDEX

1989. The future of ethology: how many legs are we standing on? Perspectives in Ethology 8, 47–54. [Pp. 55, 56, 57, 58, 59]

REFERENCES AND CITATION INDEX

Dennett, D. C. 1978. Beliefs about beliefs. Behavioral and Brain Sciences 1, 568–70 [P. 92]

REFERENCES AND CITATION INDEX

© in this web service Cambridge University Press www.cambridge.org
REFERENCES AND CITATION INDEX

Groves, C. P. 1978. What does it mean to be conscious? *Behavioral and Brain Sciences* 1, 575–6. [P. 105]

175

© in this web service Cambridge University Press www.cambridge.org
REFERENCES AND CITATION INDEX

REFERENCES AND CITATION INDEX

REFERENCES AND CITATION INDEX

REFERENCES AND CITATION INDEX

REFERENCES AND CITATION INDEX

180
REFERENCES AND CITATION INDEX

1894. Introduction to comparative psychology. Scott: London. [P. 153]

181
REFERENCES AND CITATION INDEX

Ruiter, L. de 1952. Some experiments on the camouflage of stick caterpillars. Behaviour 4, 222–32. [P. 37]

REFERENCES AND CITATION INDEX

REFERENCES AND CITATION INDEX

Tinbergen, L. 1960. The natural control of insects in pine woods. I. Factors influencing 184
REFERENCES AND CITATION INDEX

the intensity of predation by songbirds. Archives Néerlandaises de Zoologie 13, 265–336. [P. 37]
1990. Broadening the welfare index. Behavioral and Brain Sciences 13, 40–1. [P. 120]
Traynier, R. M. M. 1968. Sex attraction in the Mediterranean flour moth, Anagasta kuhniella: location of the female by the male. Canadian Entomologist 100, 5–10. [P. 103]
REFERENCES AND CITATION INDEX

adaptiveness/adaptedness of behaviour, 5, 13, 50, 86, 87, 88, 157
aerial odour trail, 147
ambiguity in anthropomorphic language, 90, 94, 162
amnesic syndrome, 19
animals not conscious, 24, 31
animal rights, 120
animal welfare, 114
see also suffering in animals
animism, 9, 157, 160
antagonistic reactions, 79, 81, 136
anthropocentrism, 6
anthropology, 16, 18
anthropomorphic language, 14–5, 24–6, 57, 68–9, 113, 150, 163–4
ambiguity of, 90, 94, 162–3
in behavioural ecology, 56
translation of, 15, 163, 164–5
anthropomorphism
applied to inanimate systems, 96, 159
as bad science, 94, 157, 158, 159
in cognitivism, 98, 99, 101
compulsive, 28–32
definitions, 1, 9
in everyday language, 26, 28, 152, 158–9, 161
explicit/genuine, 4, 5, 10–13, 57, 62, 87, 89, 92, 101, 153
favours functional studies, 56–7
fears of, 13–14, 154–6
as incurable disease, 160
indulgence towards, 5, 154, 156
in instinct theory, 35
intuition as, 27–8, 91, 94
from sensory experience, 144–5
as sloppy thinking, 15, 99
and subjectivism, 35, 165
and teleology, 1, 9–10, 166
traditional, 1–2, 5
unconscious/unwitting, 8, 32, 35, 40, 45, 53, 90, 101, 166
underestimated, 4, 32, 150–1
see also mock anthropomorphism
anthropomorphizing
about animal behaviour, 96
aids behaviour prediction, 88, 92–4
aids discovery of behavioural functions, 89, 96
anti-anthropomorphism, 2, 155–6
anti-anthropomorphists, 2, 3
apes, see chimpanzees
aphids, 66, 142
appetitive behaviour, 38, 164
arms races, 22
associationism, 91, 97, 108–9, 110–11
automata, animals as, 2, 62–3, 127
auto-shaping, 108
bat echolocation, 130
behavioural adaptations
complexity of, 156
quantitative study of, 56, 88
behavioural awareness, 90
behavioural causation
drive, 8, 33–4, 155
excitation and inhibition, 139–40
hierarchy of integrative levels, 126
inhibition neglected, 139, 141
interaction between behavioural systems, see separate entry
behavioural ecology
expansion at expense of study of mechanisms, 57
the ‘new establishment’, 62
rigorous study of behavioral adaptation, 56
seductive anthropomorphic language, 56
behavioural final common path, 132, 138
behavioural inhibition, 137, 139–44
behaviourism, radical
 fear of anthropomorphism, 13–14, 155–56
 free objective study of behavioural functions, 157
legacy of, 2, 153
oversimplified behaviour and its mechanisms, 13, 153–6
as reductionist, 7–8
taboo on subjectivism, 13–15
beliefs and desires in monkeys and frogs, 91–3
‘black-box* analyses, 128, 129, 131, 142, 167
blindsight, 19
energy overflow theory of displacement activity, 136, 138
bluetits, 47
brain
 goal-seeking capacity of human, 30
growth and development of human, 16
 hierarchical organisation of monkey cortex, 126
 prediction capacity of human, 21
Bushmen and prey behaviour, 94–5
camouflaged food, 39
casting across wind, 148
cause and effect, 84
causes v. functions, 50
causes, proximate and ultimate, 49, 50–4
causal factor strength (CFS), 138
causal hierarchy of integrative levels, 125ff
causal and intentional explanations irreconcilable, 127
causal mechanisms of behaviour, 5, 84, 124, 126, 141
 compatible with physiology, 59,132
 complexity, 156
 hierarchy, 129
chemotaxis, 145, 147, 148
 in trail-following, 149
chimpanzees
 empathy, 88
expectations of human ‘parents’, 45
human language taught to, 11, 24, 40, 41–3, 154
insight, 97
monkeys compared with, 109
other-directed and self-directed reactions to mirrors, 105
self-awareness, 107
choice, attributing to animals, 90
Clever Hans, 40–1, 44, 45, 100
codes of conduct towards animals, 122
cognition, 96–105
anthropomorphism in, 98, 163
 breaks the causal hierarchy, 127
computer analogy, 97
intuitive, 27–8, 94
in maze learning, 102
without consciousness, 101–2
cognitive v. reflex behaviour, 82
cognitive concepts in neobehaviourism, 104
cognitive explanations, 27, 28, 96
cognitivism, 91, 94
animal, 157
anthropomorphic content, 104
 and anthropomorphism, 98, 99
as ‘complexification’, 102–3
as intuitive anthropomorphism, 94
mental representations, 30, 97, 101
neoanthropomorphic, 156
among neobeaviourists, 104–5
not a science, 101
without consciousness, 101
Colorado beetle, 79
communication
 between animals, 158
deceptive v. correct information, 22
discourse analysis, 43
 by visual signs, 44
compensatory optomotor reaction
 suppression, 75
competition by deception and cheating, 21–2
conflict, 135, 137, 143
 situations, 139
consciousness, 12–13, 18–24
 in primates, 26–7
SUBJECT INDEX

as brain monitor, 19, 91
and cognition, 101
and communication, 21
evolution in humans, 15–16, 20
function, 19
as inner eye, 19, 30
not to be assumed in animals, 32, 157–8
perceiving without, 13
permits human intentional, 30, 31
and phylogenetic level, 4, 168
consummatory drinking response in rat, 138
control theory, 67, 71, 81
cooperation, 21–2
coordination of movements, 140
corollary discharge, 77–8
counter-deception, 22
counterturning, 148
creationism, 162
critical point theory of appearance of culture, 16
cultural complexity of humans, 18
cultural evolution, 22–3
cultural transmission, 18
cybernetics, 67
Darwin, Charles, 15, 120
deception
in chimpanzees, 27
competition in, 22
deliberate, 22
permitted by consciousness, 21
deception-detection, 22
demand curve analysis, 119, 122
Descartes, René, 1, 2, 13, 81, 84
design stance, 133
despair over explaining behaviour, 133
discourse analyses, 43
disinhibition, 136–9, 143
disjunctive behaviour, 143
displacement activity
disinhibition model, 136–7
energy overflow model, 136
intensification of actions, 138–9
thwarting, frustration and conflict, 137
dogs, cognitive ability, 103–4
dolphins, language learning, 40
drive, 8, 54, 134, 155
identified by functional consequence, 50, 54, 134
in instinct theory, 33–4, 82
unitary, 34, 84
dualism
hierarchy broken by, 127
of Lorenz, 81, 82
mind-body, 100
efficiency copy, 76, 78, 80, 137
emergentism, 7
empathy
in concept of animal suffering, 114
of experimenters with non-human primates, 45, 88
human with animals, 31, 83, 100
energy
in instinct theory, 33, 141
overflow theory of displacement activity, 136, 138
energy-flow models, 33, 136, 141
engineering control theory, 67, 69–70, 81
ethologists
as neobehaviourists, 6
ethology
applied, 115
causal processes neglected, 56
cognitive, 97, 98–9
comprehensiveness, 55
differs from psychology, 56
functional studies dominate, 55
Grand Theory, 33, 34, 55, 124
history, 33
imbalance in, 55–9
maintains causal gap, 57–8, 59
subjective/teleological language in, 166
evolution
of consciousness, 15–17, 20, 30, 31
cultural, 22–3
Darwinian principle, 15
of Homo sapiens sapiens, 15, 17
of intelligence, 20
SUBJECT INDEX

everyday/ordinary language, see under anthropomorphism and language
ex-afference, 76
excitability, 138
excitation, post-inhibitory, 142
excitatory, motivation one-sidedly, 141
exploratory movements, 64, 65
eye movements, 77
feelings of animal, 5, 10, 114
anthropomorphic belief in, 114, 118, 121–2
scientific understanding of, 115–17
flying animals, 144–5
maintaining upwind course, 147, 148
zig-zagging, 145, 148
food-washing by macaques, 46
frogs
leap predicting from physical, design and intentional stances, 95, 133–4
frustration, 135, 137
functional v. causal analysis, 50
functions of behaviour
as its causes, 51–4, 67
preferred study of, 56–7
gelada baboons, 26
genes
in apes v. humans, 16–17
human rebellion against, 17–18, 167
pre-programming of behaviour, 17
Gestalt psychology, 8
goal, 4, 9, 10, 35–7, 69
mental image of, 4, 10, 30, 61–2, 64, 65, 73, 78
goal-directed behaviour, 10, 30–1, 36–7, 69–74, 82, 163
human, 28–31
goldfish, efference copies, 78
heuristic, 88, 89, 93, 134
hierarchy, 124–35
anthropomorphism in, 132
of behavioural control, 125
broken by motivation, 130, 134
of causal mechanisms of behaviour, 124–5, 126, 129, 131, 132, 134
of integrative levels of causes, 125–6
in monkey cerebral cortex organization, 126
Hobbes, Thomas, 21
Holist philosophy, 8
holism, 7, 8
Holmes, S. J. (1911), 99
Homo sapiens sapiens
mental complexity, 18
evolution, 16
material achievements, 22–3
social relationships, 23
uniqueness, 15–18
Horton the elephant, 130
hoverfly, 75–6
Hull, C. L., 32
human behaviour
goal-directed, 28–31
intentional, 22, 27, 29, 30, 85
prediction, 21–2
as sub-human, 17
humans, unconscious perception, 13
hunches, 27–8
image movement, 75–7
imbalance in ethology, 55–6
imitation, 46–9
in bird song learning, 48–9
in bottle opening by tits, 47
in children, 46
v. local enhancement, 46–8
in sub-human primates, 46
inductivism, 159
indulgence towards anthropomorphism, 154–6
inhibition, 34, 139–44
behavioural, defined, 139
causal role, 144
coequal with excitation, 139, 144
neglect of, 34
of optomotor reaction, 75
patterning behaviour, 140
in physiology, 40
post-inhibitory rebound, 142
reciprocally deadlocked, in displacement, 136
inner eye, 19, 30
insight, 97-8, 163
instinct
anthropomorphism in theory of, 35
behavioural causation of, 34, 141
displacement in, 135
Freud, Sigmund, 35
Grand Theory of, 33, 55, 58, 81, 124, 135, 141, 165
integrative levels, 7, 125, 133
intelligence
animal, 12
evolution, 20
intentional stance, 9, 92-3, 95, 133
intentionality, 9, 85
intentions, 87
adaptations as, 87
anthropomorphizing, 89
human, 95
interactions between behavioural systems, 126, 128, 130, 140-1, 142, 144, 167
introspection, 9, 35
intrusions into science, 160
intuition, 28-8, 94
Japanese macaques, 46
jargon, 161
Kant, Immanuel, 123
kinaesthetic cues, 109-10
knowledge, attribution to animals, 91
Koehler, Wolfgang, 97
La Mettrie, 2
Lana Project, 45
language
anthropomorphizing, 14-15, 24-6, 56, 57, 68-9, 90, 150, 154, 158-9, 163-4
colourful v. dull, 24
development of, in humans, 17
everyday, 1, 26, 28, 29, 89, 135, 150, 152, 158-9, 161
facilitates reciprocal altruism, 21
grammatical ability sought, in apes, 43, 44, 45-6
mentalistic, 97
neobehaviourist, 53
neutral v. anthropomorphic terminology, 151, 158
objective, 158, 162, 163
ordinary, see everyday above
style v. content, 152
teaching animals human, 11, 23-4, 40, 41-4
teoleological, 13, 29, 151
legal measures to prevent animal suffering, 122
linear causal chain, 34, 84
local enhancement v. imitation, 46, 47, 48
locomotory drive, 3, 54
locusts, 8, 54, 78
macaques, 46
machines, animals as, 2, 3, 12-13
manipulation, 158
Markl, H., 97
materialism, 1, 10, 98
Maxwell’s Demon, 96
mechanism
defined, 49
confused with purpose, 50-1
neglected, 55-6
and physiology and models, 56, 132-3
mechanists and vitalists, 14
mental images, 29, 61-2, 75, 97
of frogs, 92, 93
mental state, attribution to animals, 90, 91, 92
mentalism, 100, 101, 104
metaphors, 53, 93, 159
migration
Baker’s definition, 64
control of behaviour by goal images, 61
ecological and behavioural, 63-4
explicit anthropomorphism in, 61-2
first-time travellers, 64-5
inhibition of settling response, 66
mental image of goal, 30, 62, 64, 65, 73, 80
orientation cues, 65-6
<table>
<thead>
<tr>
<th>Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>migration (contd.)</td>
</tr>
<tr>
<td>mind–body dualism, 100</td>
</tr>
<tr>
<td>mirror studies with chimpanzees, 105–10</td>
</tr>
<tr>
<td>mock anthropomorphism, 9, 53, 57, 88–90, 93–4, 159</td>
</tr>
<tr>
<td>applied to inanimate systems, 89, 96, 159</td>
</tr>
<tr>
<td>prediction of behaviour, 86–8, 92–3, 94</td>
</tr>
<tr>
<td>Monarch butterflies, 64, 66</td>
</tr>
<tr>
<td>monkey</td>
</tr>
<tr>
<td>efference copy of, 77</td>
</tr>
<tr>
<td>hierarchical organization in brain, 126</td>
</tr>
<tr>
<td>only 'other-directed' responses to mirrors, 106, 109</td>
</tr>
<tr>
<td>morality, 121</td>
</tr>
<tr>
<td>mosquitoes, 103–4</td>
</tr>
<tr>
<td>moth, guidance by wind-borne scent plume, 145, 146</td>
</tr>
<tr>
<td>motivating impulses, 90–1, 141</td>
</tr>
<tr>
<td>motivation, 54</td>
</tr>
<tr>
<td>and 'black-box' analysis, 129, 131</td>
</tr>
<tr>
<td>as blanket term, 81, 83, 129</td>
</tr>
<tr>
<td>breaks the causal hierarchy, 130, 131</td>
</tr>
<tr>
<td>excitatory bias of, 141</td>
</tr>
<tr>
<td>Lorenz's dichotomy, 81–2</td>
</tr>
<tr>
<td>not a separate class, 83</td>
</tr>
<tr>
<td>psychological derivation, results of, 131</td>
</tr>
<tr>
<td>motor commands</td>
</tr>
<tr>
<td>'efference copy' of, 77</td>
</tr>
<tr>
<td>excitatory and inhibitory, 79</td>
</tr>
<tr>
<td>as blanket term, 81, 83, 129</td>
</tr>
<tr>
<td>breaks the causal hierarchy, 130, 131</td>
</tr>
<tr>
<td>excitatory bias of, 141</td>
</tr>
<tr>
<td>Lorenz's dichotomy, 81–2</td>
</tr>
<tr>
<td>not a separate class, 83</td>
</tr>
<tr>
<td>psychological derivation, results of, 131</td>
</tr>
<tr>
<td>motor commands</td>
</tr>
<tr>
<td>'efference copy' of, 77</td>
</tr>
<tr>
<td>excitatory and inhibitory, 79</td>
</tr>
<tr>
<td>Pavlov, I. P., 166</td>
</tr>
<tr>
<td>pendulum, theoretical, 5, 98</td>
</tr>
<tr>
<td>output copy see efference copy</td>
</tr>
<tr>
<td>Pavlov, I. P., 166</td>
</tr>
<tr>
<td>Pendulum, theoretical, 5, 98</td>
</tr>
<tr>
<td>Pavlov, I. P., 166</td>
</tr>
<tr>
<td>pendulum, theoretical, 5, 98</td>
</tr>
<tr>
<td>pheromones, insect, 145</td>
</tr>
<tr>
<td>pain, awareness in humans, 117–18</td>
</tr>
<tr>
<td>Pan paniscus, 45</td>
</tr>
<tr>
<td>Orwell, George, 152</td>
</tr>
<tr>
<td>Pavlov, I. P., 166</td>
</tr>
<tr>
<td>orientation cues, 65–6</td>
</tr>
<tr>
<td>pendulum, theoretical, 5, 98</td>
</tr>
<tr>
<td>pheromones, insect, 145</td>
</tr>
<tr>
<td>pain, awareness in humans, 117–18</td>
</tr>
<tr>
<td>Pavlov, I. P., 166</td>
</tr>
<tr>
<td>pheromones, insect, 145</td>
</tr>
</tbody>
</table>
SUBJECT INDEX

philosophers, 1, 2, 7, 8, 14, 18, 21, 27, 92–3, 96, 98, 100, 125, 127, 133–4, 154, 161
phylogenetic scale, consciousness throughout, 15
physiologists, 8, 58, 59, 131
physiology
and ‘black-box’ analysis, 128–9
and behaviour analysis, 132
and motivation, 129–31
and psychology confused, 51, 79–80, 82, 90, 91–2, 113, 131, 137
pigeons, 48–9
Pleurobranchus, 129
point-to-point association learning, 101
pongids, 27
Popper, Karl, 159
positive feedback, 76
post-inhibitory rebound excitation (PIR), 139, 142–3
predation, 50
prediction of animal behaviour using
mock anthropomorphism, 88, 92–5
prey
animals of Bushmen, behaviour
prediction, 94–5
capture by birds, 39
cryptic, 37, 39, 46
proprioceptive feedback, 109
proximate causes
analysis, 133
of animal behaviour, 165
hierarchy of, 134
and ultimate causes, 49, 50–4, 86, 87
psychohydraulic theory, 136
psychologists, 6, 96, 99–100, 102, 104–5
psychology
cognitive, 97, 99, 100, 102–3, 105
comparative, 6, 40, 85, 96, 166
human, see physiology
purpose, purposiveness, 1, 4, 9, 10,
25–6, 29, 35, 51–2, 69, 86, 157
questions in ethology, Tinbergen’s basic
four, 55
radical behaviourists see behaviourism, radical
rape, 52, 53, 162
rats
cognitive behaviour in mazes, 102–3
displacement activity when drinking
inhibited, 138–9
re-aference, as negative feedback, 76, 79
reciprocal altruism, 21
reductionism, 7–8, 126–7, 133
reflexes
central interactions of, 130, 167
neobehaviourists’ dismissal, 166
‘purposive’, 86
radical behaviourist view, 7, 153
Sherrington’s reflexes
misapprehended, 166–7
simple, 81–2
stimulus–response v. integration, 153
Reflextorie, 79
representation, internal, 30, 60, 75, 79,
80, 91, 97, 101–2
saccadic suppression, 78
satiation, 82
scanning, 164–5
schedule-induced behaviour, 143
science
bad, generated by
anthropomorphism, 94
public distaste for, 121
scientific v. everyday language, 161
scientific induction, 159
scientific thought, 160
scientists
anthropomorphism ‘underground’,
157
dilemma over animal suffering, 115
reputation, 122
style of language, 150, 152
sea-slug, 129, 130
search
images, 37–40, 46, 109
rate hypothesis, 39
searching, 39, 46, 164–5
two kinds of purpose, 51–2
selective attention, 137
self-awareness in chimpanzees
alternative hypothesis of, 108, 110

© in this web service Cambridge University Press
www.cambridge.org
SUBJECT INDEX

self-awareness in chimpanzees (contd.)
as an anthropomorphic hypothesis, 107
primates and mirrors, 105–6
unprovable, 115
self-directed mirror responses of chimpanzees and orang-utans, 105–7, 109, 110, 111
self-steered counterturning, 148
Selfish Gene, The, 14
sensory feedback, 34, 76
sentence-building, 42, 44
set-point, 69
settling point, 69
settling responses of migrants, 66
sexual terms, anthropomorphic, 162
signing by apes, 43
Smuts, Jan, 8
social behaviour
described in anthropomorphic terms, 91–2
levels of, 125
primate, 26–7, 91
social interactions and consciousness, 20
social relationships
human, unique, 23
vervet monkeys, 91–2
sociobiology, influence of, 57
Sollwert, 69, 72, 73, 74
and efference copy, 78
song learning, 48–9
stimulus enhancement, 46–7
stimulus–response, 2, 62–3, 120, 127
strategy evaluation by baboons, 26
subjectivism, 35, 165
suffering in animals
empathically assumed on human analogy, 114–16
case for existence, 116–17
demand curve analysis, 119
legal measures against, 122
scientifically unproved and unpredictable, 117–18
scientists share public abhorrence, 121–2
symbol use, 43
systems analysis, 67
Teleological Imperative, 29, 54
teleology, 9–10, 29, 60, 166
terminology
neutral, 151, 158
subjective, 152, 164
teleological, 164
thought, 9
in animals, 10
human teleological, 31, 60
scientific, not sealed off, 160
thwarting, 135–9
Tolman, E. C, 86, 104
trail-following, 144–9
translating anthropomorphic language, 15, 163–5
tropisms, 7
ultimate and proximate causes, 49, 50–4
unconscious/unwitting anthropomorphism, 32, 35, 45, 90, 158
perception, 13
thought, 101
uniqueness of Homo s. sapiens, 15–17
US Navy Communication Research Institute (Miami), 40
vector navigation, 65
vervet monkeys, social relationships, 91–2
video-recording chimpanzees, 110
vitalism, 3, 4, 13, 14
Walking insects, maintaining upwind course, 147–8
warning signals, 85
weaverbirds, 36
Weiss, P., 166
wind, feeling, 144–5
wounding, 117

© in this web service Cambridge University Press