THE MECHANICS AND THERMODYNAMICS OF CONTINUA

The Mechanics and Thermodynamics of Continua presents a unified treatment of continuum mechanics and thermodynamics that emphasizes the universal status of the basic balances and the entropy imbalance. These laws are viewed as fundamental building blocks on which to frame theories of material behavior. As a valuable reference source, this book presents a detailed and complete treatment of continuum mechanics and thermodynamics for graduates and advanced undergraduates in engineering, physics, and mathematics. The chapters on plasticity discuss the standard isotropic theories and crystal plasticity and gradient plasticity.

Morton E. Gurtin is the Alumni Professor Emeritus of Mathematics at Carnegie Mellon University. His research concerns nonlinear continuum mechanics and thermodynamics, with recent emphasis on applications to problems in materials science. Among his many awards are the 2004 Timoshenko Medal of the American Society of Mechanical Engineers (ASME) “in recognition of distinguished contributions to the field of applied mechanics”; the Agostinelli Prize (an annual prize in pure and applied mathematics and mathematical physics); Accademia Nazionale dei Lincei, Italy; Dottore Honoris Causa, Civil Engineering, University of Rome; Distinguished Graduate School Alumnus Award, Brown University; and the Richard Moore Education Award, Carnegie Mellon University. In addition to his numerous archival research publications, Professor Gurtin is the author of Configurational Forces as Basic Concepts in Continuum Physics, An Introduction to Continuum Mechanics, Thermomechanics of Evolving Phase Boundaries in the Plane, Topics in Finite Elasticity, The Linear Theory of Elasticity, and Wave Propagation in Dissipative Materials (with B. D. Coleman, I. Herrera, and C. Truesdell).

Eliot Fried is a Professor of Mechanical Engineering at McGill University, where he holds the Tier I Canada Research Chair in Interfacial and Defect Mechanics. His research focuses on the mechanics and thermodynamics of novel materials, including liquid crystals, surfactant solutions, hydrogels, granular materials, biovesicles, and nanocrystalline alloys. He is the recipient of an NSF Mathematical Sciences Postdoctoral Fellowship, a Japan Society for the Promotion of Science Postdoctoral Research Fellowship, and an NSF Research Initiation Award. Prior to joining McGill, he held tenured faculty positions in the Department of Theoretical and Applied Mechanics at the University of Illinois at Urbana-Champaign and in the Department of Mechanical, Aerospace and Structural Engineering at Washington University in St. Louis. At Illinois, he was a Fellow of the Center of Advanced Study and was awarded a Critical Research Initiative Grant. His current research is funded by the National Science Foundation, the Department of Energy, the National Institute of Health, the Natural Sciences and Engineering Research Council of Canada, the Canada Research Chairs Program, and the Canada Foundation for Innovation.

Lallit Anand is the Rohsenow Professor of Mechanical Engineering at MIT. He has had more than twenty-five years of experience conducting research and teaching at MIT, as well as substantial research experience in industry. In 1975 he began his career as a Research Scientist in the Mechanical Sciences Division of the Fundamental Research Laboratory of U.S. Steel Corporation, and he joined the MIT faculty in 1982. His research concerns continuum mechanics of solids, with focus on inelastic deformation and failure of engineering materials. In 1992, Anand was awarded the Eric Reissner Medal for “outstanding contributions to the field of mechanics of materials” from the International Society for Computational Engineering Science. In 2007 he received the Khan International Medal for “outstanding lifelong contributions to the field of plasticity” from the International Journal of Plasticity. He is also a Fellow of the ASME.
The Mechanics and Thermodynamics of Continua

Morton E. Gurtin
Carnegie Mellon University

Eliot Fried
McGill University

Lallit Anand
Massachusetts Institute of Technology
Contents

Preface
page xix

PART I. VECTOR AND TENSOR ALGEBRA

1 Vector Algebra
1.1 Inner Product. Cross Product 3
1.2 Cartesian Coordinate Frames 6
1.3 Summation Convention. Components of a Vector and a Point 6

2 Tensor Algebra
2.1 What Is a Tensor? 9
2.2 Zero and Identity Tensors. Tensor Product of Two Vectors. Projection Tensor. Spherical Tensor 10
2.3 Components of a Tensor 11
2.4 Transpose of a Tensor. Symmetric and Skew Tensors 12
2.5 Product of Tensors 13
2.6 Vector Cross. Axial Vector of a Skew Tensor 15
2.7 Trace of a Tensor. Deviatoric Tensors 16
2.8 Inner Product of Tensors. Magnitude of a Tensor 17
2.9 Invertible Tensors 19
2.10 Determinant of a Tensor 21
2.11 Cofactor of a Tensor 22
2.12 Orthogonal Tensors 25
2.13 Matrix of a Tensor 26
2.14 Eigenvalues and Eigenvectors of a Tensor. Spectral Theorem 28
2.15 Square Root of a Symmetric, Positive-Definite Tensor. Polar Decomposition Theorem 31
2.16 Principal Invariants of a Tensor. Cayley–Hamilton Equation 35

PART II. VECTOR AND TENSOR ANALYSIS

3 Differentiation
3.1 Differentiation of Functions of a Scalar 41
3.2 Differentiation of Fields. Gradient 43
3.3 Divergence and Curl. Vector and Tensor Identities 46
3.4 Differentiation of a Scalar Function of a Tensor 49
Contents

4 Integral Theorems .. 52
 4.1 The Divergence Theorem 52
 4.2 Line Integrals. Stokes’ Theorem 53

PART III. KINEMATICS 59

5 Motion of a Body .. 61
 5.1 Reference Body. Material Points 61
 5.2 Basic Quantities Associated with the Motion of a Body 61
 5.3 Convection of Sets with the Body 63

6 The Deformation Gradient ... 64
 6.1 Approximation of a Deformation by a Homogeneous Deformation 64
 6.1.1 Homogeneous Deformations 64
 6.1.2 General Deformations 65
 6.2 Convection of Geometric Quantities 66
 6.2.1 Infinitesimal Fibers 66
 6.2.2 Curves 67
 6.2.3 Tangent Vectors 67
 6.2.4 Bases 68

7 Stretch, Strain, and Rotation 69
 7.1 Stretch and Rotation Tensors. Strain 69
 7.2 Fibers. Properties of the Tensors \(\mathbf{U} \) and \(\mathbf{C} \) 70
 7.2.1 Infinitesimal Fibers 70
 7.2.2 Finite Fibers 71
 7.3 Principal Stretches and Principal Directions 73

8 Deformation of Volume and Area 75
 8.1 Deformation of Normals 75
 8.2 Deformation of Volume 76
 8.3 Deformation of Area 77

9 Material and Spatial Descriptions of Fields 80
 9.1 Gradient, Divergence, and Curl 80
 9.2 Material and Spatial Time Derivatives 81
 9.3 Velocity Gradient 82
 9.4 Commutator Identities 84
 9.5 Particle Paths 85
 9.6 Stretching of Deformed Fibers 85

10 Special Motions .. 86
 10.1 Rigid Motions 86
 10.2 Motions Whose Velocity Gradient is Symmetric and Spatially Constant 87

11 Stretching and Spin in an Arbitrary Motion 89
 11.1 Stretching and Spin as Tensor Fields 89
 11.2 Properties of \(\mathbf{D} \) 90
 11.3 Stretching and Spin Using the Current Configuration as Reference 92
Contents

12 Material and Spatial Tensor Fields. Pullback and Pushforward Operations .. 95
 12.1 Material and Spatial Tensor Fields 95
 12.2 Pullback and Pushforward Operations 95

13 Modes of Evolution for Vector and Tensor Fields 98
 13.1 Vector and Tensor Fields That Convect With the Body 98
 13.1.1 Vector Fields That Convect as Tangents 98
 13.1.2 Vector Fields That Convect as Normals 99
 13.1.3 Tangentially Convecting Basis and Its Dual Basis. Covariant and Contravariant Components of Spatial Fields 99
 13.1.4 Covariant and Contravariant Convection of Tensor Fields 102
 13.2 Corotational Vector and Tensor Fields 105

14 Motions with Constant Velocity Gradient 107
 14.1 Motions .. 107

15 Material and Spatial Integration .. 109
 15.1 Line Integrals .. 109
 15.2 Volume and Surface Integrals .. 109
 15.2.1 Volume Integrals .. 110
 15.2.2 Surface Integrals .. 111
 15.3 Localization of Integrals ... 111

16 Reynolds’ Transport Relation. Isochoric Motions 113

17 More Kinematics ... 115
 17.1 Vorticity .. 115
 17.2 Transport Relations for Spin and Vorticity 115
 17.3 Irrotational Motions ... 117
 17.4 Circulation .. 118
 17.5 Vortex Lines .. 120
 17.6 Steady Motions .. 121
 17.7 A Class of Natural Reference Configurations for Fluids 122
 17.8 The Motion Problem ... 122
 17.8.1 Kinematical Boundary Conditions 122
 17.8.2 The Motion Problem in a Fixed Container 123
 17.8.3 The Motion Problem in All of Space. Solution with Constant Velocity Gradient 123

PART IV. BASIC MECHANICAL PRINCIPLES 125

18 Balance of Mass ... 127
 18.1 Global Form of Balance of Mass 127
 18.2 Local Forms of Balance of Mass 128
 18.3 Simple Consequences of Mass Balance 129

19 Forces and Moments. Balance Laws for Linear and Angular Momentum .. 131
 19.1 Inertial Frames. Linear and Angular Momentum 131
 19.2 Surface Traction s. Body Forces 132
 19.3 Balance Laws for Linear and Angular Momentum 134
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.4</td>
<td>Balance of Forces and Moments Based on the Generalized Body Force</td>
<td>136</td>
</tr>
<tr>
<td>19.5</td>
<td>Cauchy’s Theorem for the Existence of Stress</td>
<td>137</td>
</tr>
<tr>
<td>19.6</td>
<td>Local Forms of the Force and Moment Balances</td>
<td>139</td>
</tr>
<tr>
<td>19.7</td>
<td>Kinetic Energy. Conventional and Generalized External Power Expenditures</td>
<td>141</td>
</tr>
<tr>
<td>19.7.1</td>
<td>Conventional Form of the External Power</td>
<td>142</td>
</tr>
<tr>
<td>19.7.2</td>
<td>Kinetic Energy and Inertial Power</td>
<td>142</td>
</tr>
<tr>
<td>19.7.3</td>
<td>Generalized Power Balance</td>
<td>143</td>
</tr>
<tr>
<td>19.7.4</td>
<td>The Assumption of Negligible Inertial Forces</td>
<td>144</td>
</tr>
<tr>
<td>20</td>
<td>Frames of Reference</td>
<td>146</td>
</tr>
<tr>
<td>20.1</td>
<td>Changes of Frame</td>
<td>146</td>
</tr>
<tr>
<td>20.2</td>
<td>Frame-Indifferent Fields</td>
<td>147</td>
</tr>
<tr>
<td>20.3</td>
<td>Transformation Rules for Kinematic Fields</td>
<td>148</td>
</tr>
<tr>
<td>20.3.1</td>
<td>Material Time-Derivatives of Frame-Indifferent Tensor Fields are Not Frame-Indifferent</td>
<td>151</td>
</tr>
<tr>
<td>20.3.2</td>
<td>The Corotational, Covariant, and Contravariant Rates of a Tensor Field</td>
<td>151</td>
</tr>
<tr>
<td>20.3.3</td>
<td>Other Relations for the Corotational Rate</td>
<td>152</td>
</tr>
<tr>
<td>20.3.4</td>
<td>Other Relations for the Covariant Rate</td>
<td>153</td>
</tr>
<tr>
<td>20.3.5</td>
<td>Other Relations for the Contravariant Rate</td>
<td>154</td>
</tr>
<tr>
<td>20.3.6</td>
<td>General Tensorial Rate</td>
<td>155</td>
</tr>
<tr>
<td>21</td>
<td>Frame-Indifference Principle</td>
<td>157</td>
</tr>
<tr>
<td>21.1</td>
<td>Transformation Rules for Stress and Body Force</td>
<td>157</td>
</tr>
<tr>
<td>21.2</td>
<td>Inertial Body Force in a Frame That Is Not Inertial</td>
<td>159</td>
</tr>
<tr>
<td>22</td>
<td>Alternative Formulations of the Force and Moment Balances</td>
<td>161</td>
</tr>
<tr>
<td>22.1</td>
<td>Force and Moment Balances as a Consequence of Frame-Indifference of the Expended Power</td>
<td>161</td>
</tr>
<tr>
<td>22.2</td>
<td>Principle of Virtual Power</td>
<td>163</td>
</tr>
<tr>
<td>22.2.1</td>
<td>Application to Boundary-Value Problems</td>
<td>165</td>
</tr>
<tr>
<td>22.2.2</td>
<td>Fundamental Lemma of the Calculus of Variations</td>
<td>167</td>
</tr>
<tr>
<td>23</td>
<td>Mechanical Laws for a Spatial Control Volume</td>
<td>168</td>
</tr>
<tr>
<td>23.1</td>
<td>Mass Balance for a Control Volume</td>
<td>169</td>
</tr>
<tr>
<td>23.2</td>
<td>Momentum Balances for a Control Volume</td>
<td>169</td>
</tr>
<tr>
<td>24</td>
<td>Referential Forms for the Mechanical Laws</td>
<td>173</td>
</tr>
<tr>
<td>24.1</td>
<td>Piola Stress. Force and Moment Balances</td>
<td>173</td>
</tr>
<tr>
<td>24.2</td>
<td>Expended Power</td>
<td>175</td>
</tr>
<tr>
<td>25</td>
<td>Further Discussion of Stress</td>
<td>177</td>
</tr>
<tr>
<td>25.1</td>
<td>Power-Conjugate Pairings. Second Piola Stress</td>
<td>177</td>
</tr>
<tr>
<td>25.2</td>
<td>Transformation Laws for the Piola Stresses</td>
<td>178</td>
</tr>
<tr>
<td>PART V.</td>
<td>BASIC THERMODYNAMICAL PRINCIPLES</td>
<td>181</td>
</tr>
<tr>
<td>26</td>
<td>The First Law: Balance of Energy</td>
<td>183</td>
</tr>
<tr>
<td>26.1</td>
<td>Global and Local Forms of Energy Balance</td>
<td>184</td>
</tr>
<tr>
<td>26.2</td>
<td>Terminology for “Extensive” Quantities</td>
<td>185</td>
</tr>
</tbody>
</table>
Contents

27 The Second Law: Nonnegative Production of Entropy 186
 27.1 Global Form of the Entropy Imbalance 187
 27.2 Temperature and the Entropy Imbalance 187
 27.3 Free-Energy Imbalance. Dissipation .. 188

28 General Theorems ... 190
 28.1 Invariant Nature of the First Two Laws 190
 28.2 Decay Inequalities for the Body Under Passive Boundary Conditions .. 191
 28.2.1 Isolated Body .. 191
 28.2.2 Boundary Essentially at Constant Pressure and Temperature .. 192

29 A Free-Energy Imbalance for Mechanical Theories 194
 29.1 Free-Energy Imbalance. Dissipation .. 194
 29.2 Digression: Role of the Free-Energy Imbalance within the General Thermodynamic Framework .. 195
 29.3 Decay Inequalities .. 196

30 The First Two Laws for a Spatial Control Volume 197

31 The First Two Laws Expressed Referentially .. 199
 31.1 Global Forms of the First Two Laws .. 200
 31.2 Local Forms of the First Two Laws .. 201
 31.3 Decay Inequalities for the Body Under Passive Boundary Conditions .. 202
 31.4 Mechanical Theory: Free-Energy Imbalance 204

PART VI. MECHANICAL AND THERMODYNAMICAL LAWS AT A SHOCK WAVE 207

32 Shock Wave Kinematics ... 209
 32.1 Notation. Terminology ... 209
 32.2 Hadamard’s Compatibility Conditions ... 210
 32.3 Relation Between the Scalar Normal Velocities \mathbf{v}_1 and \mathbf{v} .. 212
 32.4 Transport Relations in the Presence of a Shock Wave 212
 32.5 The Divergence Theorem in the Presence of a Shock Wave 215

33 Basic Laws at a Shock Wave: Jump Conditions 216
 33.1 Balance of Mass and Momentum .. 216
 33.2 Balance of Energy and the Entropy Imbalance 218

PART VII. INTERLUDE: BASIC HYPOTHESES FOR DEVELOPING PHYSICALLY MEANINGFUL CONSTITUTIVE THEORIES 221

34 General Considerations ... 223

35 Constitutive Response Functions .. 224

36 Frame-Indifference and Compatibility with Thermodynamics 225
PART VIII. RIGID HEAT CONDUCTORS

37 Basic Laws .. 229

38 General Constitutive Equations 230

40 Consequences of the State Restrictions 234

41 Consequences of the Heat-Conduction Inequality 236

42 Fourier's Law 237

PART IX. THE MECHANICAL THEORY OF COMPRESSIBLE AND INCOMPRESSIBLE FLUIDS 239

43 Brief Review 241
 43.1 Basic Kinematical Relations 241
 43.2 Basic Laws 241
 43.3 Transformation Rules and Objective Rates 242

44 Elastic Fluids 244
 44.1 Constitutive Theory 244
 44.2 Consequences of Frame-Indifference 244
 44.3 Consequences of Thermodynamics 245
 44.4 Evolution Equations 246

45 Compressible, Viscous Fluids 250
 45.1 General Constitutive Equations 250
 45.2 Consequences of Frame-Indifference 251
 45.3 Consequences of Thermodynamics 253
 45.4 Compressible, Linearly Viscous Fluids 255
 45.5 Compressible Navier–Stokes Equations 256
 45.6 Vorticity Transport Equation 256

46 Incompressible Fluids 259
 46.1 Free-Energy Imbalance for an Incompressible Body 259
 46.2 Incompressible, Viscous Fluids 260
 46.3 Incompressible, Linearly Viscous Fluids 261
 46.4 Incompressible Navier–Stokes Equations 262
 46.5 Circulation, Vorticity-Transport Equation 263
 46.6 Pressure Poisson Equation 265
 46.7 Transport Equations for the Velocity Gradient, Stretching, and Spin in a Linearly Viscous, Incompressible Fluid 266
 46.8 Impetus-Gauge Formulation of the Navier–Stokes Equations 267
 46.9 Perfect Fluids 268
PART X. MECHANICAL THEORY OF ELASTIC SOLIDS 271

47 Brief Review ... 273

47.1 Kinematical Relations 273
47.2 Basic Laws 273
47.3 Transformation Laws Under a Change in Frame 274

48 Constitutive Theory .. 276

48.1 Consequences of Frame-Indifference 276
48.2 Thermodynamic Restrictions 278
48.2.1 The Stress Relation 278
48.2.2 Consequences of the Stress Relation 280
48.2.3 Natural Reference Configuration 280

49 Summary of Basic Equations. Initial/Boundary-Value Problems 282

49.1 Basic Field Equations 282
49.2 A Typical Initial/Boundary-Value Problem 283

50 Material Symmetry ... 284

50.1 The Notion of a Group. Invariance Under a Group 284
50.2 The Symmetry Group \mathcal{G} 285
50.2.1 Proof That \mathcal{G} Is a Group 288
50.3 Isotropy 288
50.3.1 Free Energy Expressed in Terms of Invariants 290
50.3.2 Free Energy Expressed in Terms of Principal stretches 292

51 Simple Shear of a Homogeneous, Isotropic Elastic Body 294

52 The Linear Theory of Elasticity 297

52.1 Small Deformations 297
52.2 The Stress-Strain Law for Small Deformations 298
52.2.1 The Elasticity Tensor 298
52.2.2 The Compliance Tensor 300
52.2.3 Estimates for the Stress and Free Energy 300
52.3 Basic Equations of the Linear Theory of Elasticity 302
52.4 Special Forms for the Elasticity Tensor 302
52.4.1 Isotropic Material 303
52.4.2 Cubic Crystal 304
52.5 Basic Equations of the Linear theory of Elasticity for an Isotropic Material 306
52.5.1 Statical Equations 307
52.6 Some Simple Statical Solutions 309
52.7 Boundary-Value Problems 310
52.7.1 Elastostatics 310
52.7.2 Elastodynamics 313
52.8 Sinusoidal Progressive Waves 313

53 Digression: Incompressibility ... 316

53.1 Kinematics of Incompressibility 316
53.2 Indeterminacy of the Pressure. Free-Energy Imbalance 317
53.3 Changes in Frame 318
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>Incompressible Elastic Materials</td>
<td>319</td>
</tr>
<tr>
<td>54.1</td>
<td>Constitutive Theory</td>
<td>319</td>
</tr>
<tr>
<td>54.1.1</td>
<td>Consequences of Frame-Indifference</td>
<td>319</td>
</tr>
<tr>
<td>54.1.2</td>
<td>Domain of Definition of the Response Functions</td>
<td>320</td>
</tr>
<tr>
<td>54.1.3</td>
<td>Thermodynamic Restrictions</td>
<td>321</td>
</tr>
<tr>
<td>54.2</td>
<td>Incompressible Isotropic Elastic Bodies</td>
<td>323</td>
</tr>
<tr>
<td>54.3</td>
<td>Simple Shear of a Homogeneous, Isotropic, Incompressible Elastic Body</td>
<td>324</td>
</tr>
<tr>
<td>55</td>
<td>Approximately Incompressible Elastic Materials</td>
<td>326</td>
</tr>
</tbody>
</table>

PART XI. THERMOELASTICITY

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>Brief Review</td>
<td>333</td>
</tr>
<tr>
<td>56.1</td>
<td>Kinematical Relations</td>
<td>333</td>
</tr>
<tr>
<td>56.2</td>
<td>Basic Laws</td>
<td>333</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td>Constitutive Theory</td>
<td>335</td>
</tr>
<tr>
<td>57.1</td>
<td>Consequences of Frame-Indifference</td>
<td>335</td>
</tr>
<tr>
<td>57.2</td>
<td>Thermodynamic Restrictions</td>
<td>336</td>
</tr>
<tr>
<td>57.3</td>
<td>Consequences of the Thermodynamic Restrictions</td>
<td>338</td>
</tr>
<tr>
<td>57.3.1</td>
<td>Consequences of the State Relations</td>
<td>338</td>
</tr>
<tr>
<td>57.3.2</td>
<td>Consequences of the Heat-Conduction Inequality</td>
<td>339</td>
</tr>
<tr>
<td>57.4</td>
<td>Elasticity Tensor. Stress-Temperature Modulus. Heat Capacity</td>
<td>341</td>
</tr>
<tr>
<td>57.5</td>
<td>The Basic Thermoelastic Field Equations</td>
<td>342</td>
</tr>
<tr>
<td>57.6</td>
<td>Entropy as Independent Variable. Nonconductors</td>
<td>343</td>
</tr>
<tr>
<td>57.7</td>
<td>Nonconductors</td>
<td>346</td>
</tr>
<tr>
<td>57.8</td>
<td>Material Symmetry</td>
<td>346</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>Natural Reference Configuration for a Given Temperature</td>
<td>348</td>
</tr>
<tr>
<td>58.1</td>
<td>Asymptotic Stability and its Consequences. The Gibbs Function</td>
<td>348</td>
</tr>
<tr>
<td>58.2</td>
<td>Local Relations at a Reference Configuration that is Natural for a Temperature ϑ_0</td>
<td>349</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>Linear Thermoelasticity</td>
<td>354</td>
</tr>
<tr>
<td>59.1</td>
<td>Approximate Constitutive Equations for the Stress and Entropy</td>
<td>354</td>
</tr>
<tr>
<td>59.2</td>
<td>Basic Field Equations of Linear Thermoelasticity</td>
<td>356</td>
</tr>
<tr>
<td>59.3</td>
<td>Isotropic Linear Thermoelasticity</td>
<td>356</td>
</tr>
</tbody>
</table>

PART XII. SPECIES DIFFUSION COUPLED TO ELASTICITY

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>Balance Laws for Forces, Moments, and the Conventional External Power</td>
<td>363</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>Mass Balance for a Single Diffusing Species</td>
<td>364</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Multiple Species</td>
<td>369</td>
</tr>
<tr>
<td>63.1</td>
<td>Species Mass Balances</td>
<td>369</td>
</tr>
<tr>
<td>63.2</td>
<td>Free-Energy Imbalance</td>
<td>370</td>
</tr>
</tbody>
</table>
Contents

64 **Digression: The Thermodynamic Laws in the Presence of Species Transport** 371

65 **Referential Laws** .. 374

65.1 Single Species 374
65.2 Multiple Species 376

66 **Constitutive Theory for a Single Species** .. 377

66.1 Consequences of Frame-Indifference 377
66.2 Thermodynamic Restrictions 378
66.3 Consequences of the Thermodynamic Restrictions 380
66.4 Fick’s Law 382

67 **Material Symmetry** .. 385

68 **Natural Reference Configuration** .. 388

69 **Summary of Basic Equations for a Single Species** 390

70 **Constitutive Theory for Multiple Species** .. 391

70.1 Consequences of Frame-Indifference and Thermodynamics 391
70.2 Fick’s Law 393
70.3 Natural Reference Configuration 393

71 **Summary of Basic Equations for \(N \) Independent Species** 396

72 **Substitutional Alloys** .. 398

72.1 Lattice Constraint 398
72.2 Substitutional Flux Constraint 399
72.3 Relative Chemical Potentials. Free-Energy Imbalance 399
72.4 Elimination of the Lattice Constraint. Larché–Cahn Differentiation 400
72.5 General Constitutive Equations 403
72.6 Thermodynamic Restrictions 404
72.7 Verification of (i) 406
72.8 Normalization Based on the Elimination of the Lattice Constraint 406

73 **Linearization** ... 408

73.1 Approximate Constitutive Equations for the Stress, Chemical Potentials, and Fluxes 408
73.2 Basic Equations of the Linear Theory 410
73.3 Isotropic Linear Theory 411

PART XIII. THEORY OF ISOTROPIC PLASTIC SOLIDS UNDERGOING SMALL DEFORMATIONS 415

74 **Some Phenomenological Aspects of the Elastic-Plastic Stress-Strain Response of Polycrystalline Metals** 417

74.1 Isotropic and Kinematic Strain-Hardening 419
75 **Formulation of the Conventional Theory. Preliminaries** 422
 75.1 Basic Equations .. 422
 75.2 Kinematical Assumptions that Define Plasticity Theory 423
 75.3 Separability Hypothesis ... 424
 75.4 Constitutive Characterization of Elastic Response 424

76 **Formulation of the Mises Theory of Plastic Flow** 426
 76.1 General Constitutive Equations for Plastic Flow 427
 76.2 Rate-Independence ... 428
 76.3 Strict Dissipativity .. 430
 76.4 Formulation of the Mises Flow Equations ... 431
 76.5 Initializing the Mises Flow Equations .. 434
 76.5.1 Flow Equations With $Y(S)$ not Identically Equal to S 434
 76.5.2 Theory with Flow Resistance as Hardening Variable 435
 76.6 Solving the Hardening Equation. Accumulated Plastic Strain is the Most General Hardening Variable ... 435
 76.7 Flow Resistance as Hardening Variable, Revisited 439
 76.8 Yield Surface. Yield Function. Consistency Condition 439
 76.9 Hardening and Softening ... 443

77 **Inversion of the Mises Flow Rule: $\dot{\varepsilon}^p$ in Terms of $\dot{\varepsilon}$ and T** ... 445

78 **Rate-Dependent Plastic Materials** ... 449
 78.1 Background ... 449
 78.2 Materials with Simple Rate-Dependence ... 449
 78.3 Power-Law Rate-Dependence .. 452

79 **Maximum Dissipation** .. 454
 79.1 Basic Definitions .. 454
 79.2 Warm-up: Derivation of the Mises Flow Equations Based on Maximum Dissipation ... 456
 79.3 More General Flow Rules. Drucker’s Theorem 458
 79.3.1 Yield-Set Hypotheses .. 458
 79.3.2 Digression: Some Definitions and Results Concerning Convex Surfaces .. 460
 79.3.3 Drucker’s Theorem .. 461
 79.4 The Conventional Theory of Perfectly Plastic Materials Fits within the Framework Presented Here ... 462

80 **Hardening Characterized by a Defect Energy** 465
 80.1 Free-Energy Imbalance Revisited .. 465
 80.2 Constitutive Equations. Flow Rule ... 466

81 **The Thermodynamics of Mises–Hill Plasticity** 469
 81.1 Background ... 469
 81.2 Thermodynamics .. 470
 81.3 Constitutive Equations ... 470
 81.4 Nature of the Defect Energy .. 472
 81.5 The Flow Rule and the Boundedness Inequality 473
 81.6 Balance of Energy Revisited ... 473
 81.7 Thermally Simple Materials ... 475
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>81.8</td>
<td>Determination of the Defect Energy by the Rosakis Brothers, Hodowany, and Ravichandran</td>
<td>476</td>
</tr>
<tr>
<td>81.9</td>
<td>Summary of the Basic Equations</td>
<td>477</td>
</tr>
<tr>
<td>82</td>
<td>Formulation of Initial/Boundary-Value Problems for the Mises Flow Equations as Variational Inequalities</td>
<td>479</td>
</tr>
<tr>
<td>82.1</td>
<td>Reformulation of the Mises Flow Equations in Terms of Dissipation</td>
<td>479</td>
</tr>
<tr>
<td>82.2</td>
<td>The Global Variational Inequality</td>
<td>482</td>
</tr>
<tr>
<td>82.3</td>
<td>Alternative Formulation of the Global Variational Inequality When Hardening is Described by a Defect Energy</td>
<td>483</td>
</tr>
<tr>
<td></td>
<td>PART XIV. SMALL DEFORMATION, ISO TROPIC PLASTICITY BASED ON THE PRINCIPLE OF VIRTUAL POWER</td>
<td>485</td>
</tr>
<tr>
<td>83</td>
<td>Introduction</td>
<td>487</td>
</tr>
<tr>
<td>84</td>
<td>Conventional Theory Based on the Principle of Virtual Power</td>
<td>489</td>
</tr>
<tr>
<td>84.1</td>
<td>General Principle of Virtual Power</td>
<td>489</td>
</tr>
<tr>
<td>84.2</td>
<td>Principle of Virtual Power Based on the Codirectionality Constraint</td>
<td>493</td>
</tr>
<tr>
<td>84.2.1</td>
<td>General Principle Based on Codirectionality</td>
<td>493</td>
</tr>
<tr>
<td>84.2.2</td>
<td>Streamlined Principle Based on Codirectionality</td>
<td>495</td>
</tr>
<tr>
<td>84.3</td>
<td>Virtual External Forces Associated with Dislocation Flow</td>
<td>496</td>
</tr>
<tr>
<td>84.4</td>
<td>Free-Energy Imbalance</td>
<td>497</td>
</tr>
<tr>
<td>84.5</td>
<td>Discussion of the Virtual-Power Formulation</td>
<td>498</td>
</tr>
<tr>
<td>85</td>
<td>Basic Constitutive Theory</td>
<td>499</td>
</tr>
<tr>
<td>86</td>
<td>Material Stability and Its Relation to Maximum Dissipation</td>
<td>501</td>
</tr>
<tr>
<td></td>
<td>PART XV. STRAIN GRADIENT PLASTICITY BASED ON THE PRINCIPLE OF VIRTUAL POWER</td>
<td>505</td>
</tr>
<tr>
<td>87</td>
<td>Introduction</td>
<td>507</td>
</tr>
<tr>
<td>88</td>
<td>Kinematics</td>
<td>509</td>
</tr>
<tr>
<td>88.1</td>
<td>Characterization of the Burgers Vector</td>
<td>509</td>
</tr>
<tr>
<td>88.2</td>
<td>Irrotational Plastic Flow</td>
<td>511</td>
</tr>
<tr>
<td>89</td>
<td>The Gradient Theory of Aifantis</td>
<td>512</td>
</tr>
<tr>
<td>89.1</td>
<td>The Virtual-Power Principle of Fleck and Hutchinson</td>
<td>512</td>
</tr>
<tr>
<td>89.2</td>
<td>Free-Energy Imbalance</td>
<td>515</td>
</tr>
<tr>
<td>89.3</td>
<td>Constitutive Equations</td>
<td>516</td>
</tr>
<tr>
<td>89.4</td>
<td>Flow Rules</td>
<td>517</td>
</tr>
<tr>
<td>89.5</td>
<td>Microscopically Simple Boundary Conditions</td>
<td>518</td>
</tr>
<tr>
<td>89.6</td>
<td>Variational Formulation of the Flow Rule</td>
<td>519</td>
</tr>
<tr>
<td>89.7</td>
<td>Plastic Free-Energy Balance</td>
<td>520</td>
</tr>
<tr>
<td>89.8</td>
<td>Spatial Oscillations, Shear Bands</td>
<td>521</td>
</tr>
<tr>
<td>89.8.1</td>
<td>Oscillations</td>
<td>521</td>
</tr>
<tr>
<td>89.8.2</td>
<td>Single Shear Bands and Periodic Arrays of Shear Bands</td>
<td>521</td>
</tr>
</tbody>
</table>
90 The Gradient Theory of Gurtin and Anand ... 524
 90.1 Third-Order Tensors ... 524
 90.2 Virtual-Power Formulation: Macroscopic and
 Microscopic Force Balances .. 525
 90.3 Free-Energy Imbalance ... 528
 90.4 Energetic Constitutive Equations .. 528
 90.5 Dissipative Constitutive Equations ... 530
 90.6 Flow Rule .. 532
 90.7 Microscopically Simple Boundary Conditions 533
 90.8 Variational Formulation of the Flow Rule 534
 90.9 Plastic Free-Energy Balance. Flow-Induced Strengthening 535
 90.10 Rate-Independent Theory ... 536

PART XVI. LARGE-DEFORMATION THEORY OF ISOTROPIC
PLASTIC SOLIDS .. 539

91 Kinematics ... 541
 91.1 The Krön er Decomposition ... 541
 91.2 Digression: Single Crystals ... 543
 91.3 Elastic and Plastic Stretching and Spin. Plastic Incompressibility 543
 91.4 Elastic and Plastic Polar Decompositions 544
 91.5 Change in Frame Revisited in View of the Krön er Decomposition ... 546

92 Virtual-Power Formulation of the Standard and Microscopic
Force Balances ... 548
 92.1 Internal and External Expenditures of Power 548
 92.2 Principle of Virtual Power .. 549
 92.2.1 Consequences of Frame-Indifference 550
 92.2.2 Macroscopic Force Balance .. 551
 92.2.3 Microscopic Force Balance .. 551

93 Free-Energy Imbalance ... 553
 93.1 Free-Energy Imbalance Expressed in Terms of the
 Cauchy Stress .. 553

94 Two New Stresses ... 555
 94.1 The Second Piola Elastic-Stress T^e ... 555
 94.2 The Mandel Stress M^e ... 556

95 Constitutive Theory ... 557
 95.1 General Separable Constitutive Theory 557
 95.2 Structural Frame-Indifference and the Characterization
 of Polycrystalline Materials Without Texture 559
 95.3 Interaction of Elasticity and Plastic Flow 562
 95.4 Consequences of Rate-Independence .. 563
 95.5 Derivation of the Mises Flow Equations Based on
 Maximum-Dissipation .. 564

96 Summary of the Basic Equations. Remarks 566

97 Plastic Irrotationality: The Condition $W^p \equiv 0$ 567
<table>
<thead>
<tr>
<th>Contents</th>
<th>xvii</th>
</tr>
</thead>
<tbody>
<tr>
<td>98 Yield Surface. Yield Function. Consistency Condition ..</td>
<td>569</td>
</tr>
<tr>
<td>99 $</td>
<td>\mathbf{D}'</td>
</tr>
<tr>
<td>99.1 Some Important Identities</td>
<td>571</td>
</tr>
<tr>
<td>99.2 Conditions that Describe Loading and Unloading</td>
<td>571</td>
</tr>
<tr>
<td>99.3 The Inverted Flow Rule</td>
<td>574</td>
</tr>
<tr>
<td>99.4 Equivalent Formulation of the Constitutive Equations and Plastic Mises Flow Equations Based on the Inverted Flow Rule</td>
<td>574</td>
</tr>
<tr>
<td>100 Evolution Equation for the Second Piola Stress</td>
<td>576</td>
</tr>
<tr>
<td>101 Rate-Dependent Plastic Materials</td>
<td>579</td>
</tr>
<tr>
<td>101.1 Rate-Dependent Flow Rule</td>
<td>579</td>
</tr>
<tr>
<td>101.2 Inversion of the Rate-Dependent Flow Rule</td>
<td>579</td>
</tr>
<tr>
<td>101.3 Summary of the Complete Constitutive Theory</td>
<td>580</td>
</tr>
<tr>
<td>PART XVII. THEORY OF SINGLE CRYSTALS UNDERGOING SMALL DEFORMATIONS</td>
<td>583</td>
</tr>
<tr>
<td>102.1 Introduction</td>
<td>583</td>
</tr>
<tr>
<td>102 Basic Single-Crystal Kinematics</td>
<td>586</td>
</tr>
<tr>
<td>103 The Burgers Vector and the Flow of Screw and Edge Dislocations</td>
<td>588</td>
</tr>
<tr>
<td>103.1 Decomposition of the Burgers Tensor \mathbf{G} into Distributions of Edge and Screw Dislocations</td>
<td>588</td>
</tr>
<tr>
<td>103.2 Dislocation Balances</td>
<td>590</td>
</tr>
<tr>
<td>103.3 The Tangential Gradient $\nabla \alpha$ on the Slip Plane $\Pi \alpha$</td>
<td>590</td>
</tr>
<tr>
<td>104 Conventional Theory of Single-Crystals</td>
<td>593</td>
</tr>
<tr>
<td>104.1 Virtual-Power Formulation of the Standard and Microscopic Force Balances</td>
<td>593</td>
</tr>
<tr>
<td>104.2 Free-Energy Imbalance</td>
<td>596</td>
</tr>
<tr>
<td>104.3 General Separable Constitutive Theory</td>
<td>596</td>
</tr>
<tr>
<td>104.4 Linear Elastic Stress-Strain Law</td>
<td>597</td>
</tr>
<tr>
<td>104.5 Constitutive Equations for Flow with Simple Rate-Dependence</td>
<td>597</td>
</tr>
<tr>
<td>104.6 Power-Law Rate Dependence</td>
<td>601</td>
</tr>
<tr>
<td>104.7 Self-Hardening, Latent-Hardening</td>
<td>601</td>
</tr>
<tr>
<td>104.8 Summary of the Constitutive Theory</td>
<td>602</td>
</tr>
<tr>
<td>105 Single-Crystal Plasticity at Small Length-Scales: A Small-Deformation Gradient Theory</td>
<td>604</td>
</tr>
<tr>
<td>105.1 Virtual-Power Formulation of the Standard and Microscopic Force Balances of the Gradient Theory</td>
<td>604</td>
</tr>
<tr>
<td>105.2 Free-Energy Imbalance</td>
<td>607</td>
</tr>
<tr>
<td>105.3 Energetic Constitutive Equations, Peach–Koehler Forces</td>
<td>607</td>
</tr>
<tr>
<td>105.4 Constitutive Equations that Account for Dissipation</td>
<td>609</td>
</tr>
<tr>
<td>105.5 Viscoplastic Flow Rule</td>
<td>612</td>
</tr>
<tr>
<td>105.6 Microscopically Simple Boundary Conditions</td>
<td>615</td>
</tr>
<tr>
<td>105.7 Variational Formulation of the Flow Rule</td>
<td>616</td>
</tr>
<tr>
<td>105.8 Plastic Free-Energy Balance</td>
<td>617</td>
</tr>
<tr>
<td>105.9 Some Remarks</td>
<td>618</td>
</tr>
</tbody>
</table>
PART XVIII. SINGLE CRYSTALS UNDERGOING LARGE DEFORMATIONS

106 Basic Single-Crystal Kinematics.......................... 623

107 The Burgers Vector and the Flow of Screw and Edge Dislocations 626
 107.1 Transformation of Vector Area Measures Between the Reference, Observed, and Lattice Spaces 626
 107.2 Characterization of the Burgers Vector 627
 107.3 The Plastically Convected Rate of G 629
 107.4 Densities of Screw and Edge Dislocations 631
 107.5 Comparison of Small- and Large-Deformation Results Concerning Dislocation Densities 633

108 Virtual-Power Formulation of the Standard and Microscopic Force Balances 634
 108.1 Internal and External Expenditures of Power 634
 108.2 Consequences of Frame-Indifference 636
 108.3 Macroscopic and Microscopic Force Balances 637

109 Free-Energy Imbalance 639

110 Conventional Theory 641
 110.1 Constitutive Relations 641
 110.2 Simplified Constitutive Theory 643
 110.3 Summary of Basic Equations 644

111 Taylor's Model of Polycrystal 646
 111.1 Kinematics of a Taylor Polycrystal 646
 111.2 Principle of Virtual Power 648
 111.3 Free-Energy Imbalance 651
 111.4 Constitutive Relations 651

112 Single-Crystal Plasticity at Small Length Scales: A Large-Deformation Gradient Theory 653
 112.1 Energetic Constitutive Equations. Peach–Koehler Forces 653
 112.2 Dissipative Constitutive Equations that Account for Slip-Rate Gradients 654
 112.3 Viscoplastic Flow Rule 656
 112.4 Microscopically Simple Boundary Conditions 657
 112.5 Variational Formulation 658
 112.6 Plastic Free-Energy Balance 659
 112.7 Some Remarks 660

113 Isotropic Functions 665
 113.1 Isotropic Scalar Functions 666
 113.2 Isotropic Tensor Functions 666
 113.3 Isotropic Linear Tensor Functions 668

114 The Exponential of a Tensor 669

References .. 671

Index .. 683
Preface

The Central Thrust of This Book

A large class of theories in continuum physics takes as its starting point the balance laws for mass, for linear and angular momenta, and for energy, together with an entropy imbalance that represents the second law of thermodynamics. Unfortunately, most engineering curricula teach the momentum balance laws for an array of materials, often without informing students that these laws are actually independent of those materials. Further, while courses do discuss balance of energy, they often fail to mention the second law of thermodynamics, even though its place as a basic law for continua was carefully set forth by Truesdell and Toupin\(^1\) almost half a century ago.

This book presents a unified treatment of continuum mechanics and thermodynamics that emphasizes the universal status of the basic balances and the entropy imbalance. These laws and an hypothesis – the principle of frame-indifference, which asserts that physical theories be independent of the observer (i.e., frame of reference) – are viewed as fundamental building blocks upon which to frame theories of material behavior.

The basic laws and the frame-indifference hypothesis – being independent of material – are common to all bodies that we discuss. On the other hand, particular materials are defined by additional equations in the form of constitutive relations (such as Fourier’s law) and constraints (such as incompressibility). Trivially, such constitutive assumptions reflect the fact that two bodies, one made of steel and the other of wood, generally behave differently when subject to prescribed forces – even though the two bodies obey the same basic laws.

Our general discussion of constitutive equations is based on:

- (i) the principle of frame-indifference;
- (ii) the use of thermodynamics to restrict constitutive equations via a paradigm generally referred to as the Coleman–Noll procedure.

\(^1\) TRUESDELL & TOUPIN (1960, p. 644). In the 1960s and early 1970s this form of the second law, generally referred to as the Clausius–Duhem inequality (cf. footnote 152), was considered to be controversial because – as the argument went – the notions of entropy and temperature make no sense outside of equilibrium, an argument that stands in stark contrast to the fact that temperatures are routinely measured at shock waves. The religious nature of this argument together with the observation that most conventional theories are consistent with this form of the second law gradually led to its general acceptance – and its overall power in describing new and more general theories gave additional credence to its place as a basic law of continuum physics.
Because frame-indifference and the Coleman–Noll procedure represent powerful tools for developing physically reasonable constitutive equations, we begin our discussion by developing such equations for:

(I) the conduction of heat in a rigid medium, as this represents an excellent vehicle for demonstrating the power of the Coleman–Noll procedure;

(II) the mechanical theories of both compressible and incompressible, linearly viscous fluids, where frame-indifference applied within a very general constitutive framework demonstrates the veracity of conventional constitutive relations for fluids.

Based on frame-indifference and using the Coleman–Noll procedure, we discuss the following topics: elastic solids under isothermal and nonisothermal conditions; coupled elastic deformation and species transport, where the species in question may be ionic, atomic, molecular, or chemical; both isotropic and crystalline plastic solids; and viscoplastic solids. In our treatment of these subjects, we consider general large-deformation theories as well as corresponding small-deformation theories.

Our discussion of rate-independent and rate-dependent plasticity is not traditional. Unlike – but compatible with – conventional treatments, we consider flow rules that give the deviatoric stress as a function of the plastic strain-rate (and an internal variable that represents hardening).2 We also provide a parallel description of the conventional theory based on the principle of virtual power. We do this because: (i) it allows us to account separately for the stretching of the microscopic structure and the flow of dislocations through that structure as described, respectively, by the elastic and plastic strain-rates; (ii) it allows for a precise discussion of material stability; and (iii) it provides a basic structure within which one can formulate more general theories. In this last regard, conventional plasticity cannot characterize recent experimental results exhibiting size effects. To model size-dependent phenomena requires a theory of plasticity with one or more material length-scales. A number of recent theories – referred to as gradient theories – accomplish this by allowing for constitutive dependencies on gradients of plastic strain and/or its rate. Such dependencies generally lead to nonlocal flow rules in the form of partial differential equations with concomitant boundary conditions. For that reason, we find it most useful to develop gradient theories via the principle of virtual power, a paradigm that automatically delivers the partial-differential equations and boundary conditions from natural assumptions regarding the expenditure of power.

Requirements of space and pedagogy led us to omit several important topics such as liquid crystals, non-Newtonian fluids, configurational forces, relativistic continuum mechanics, computational mechanics, classical viscoelasticity, and couple-stress theory.

For Whom Is This Book Meant?

Our goal is a book suitable for engineers, physicists, and mathematicians. Moreover, with the intention of providing a valuable reference source, we have tried to present a fairly detailed and complete treatment of continuum mechanics and thermodynamics. Such an ambitious scope requires a willingness to bore some when discussing issues not familiar to others. We have used parts of this book with good

2 We do this for consistency with the remainder of the book, which is based on the requirement that “the stress in a body is determined by the history of the motion of that body”; cf. Truesdell & Noll (1965, p. 56). When discussing crystalline bodies, the flow rules express the resolved shear on the individual slip systems in terms of corresponding slip rates.
success in teaching graduates and advanced undergraduates in engineering, physics, and mathematics.

Direct Notation
For the most part, we use direct – as opposed to component (i.e., index) – notation. While some engineers and physicists might find this difficult, at least at first, we believe that the gain in clarity and insight more than compensates for the initial effort required. For those not familiar with direct notation, we have included helpful sections on vector and tensor algebra and analysis, and we present the most important results in both direct and component form.

Rigor
We present careful proofs of the basic theorems of the subject. However, when the proofs are complicated or lengthy they generally appear in petite at the end of the section in question. We also do not normally state smoothness hypotheses. Indeed, standard differentiability assumptions sufficient to make an argument rigorous are generally obvious to mathematicians and of little interest to engineers and physicists.

Attributions and Historical Issues
Our emphasis is on basic concepts and central results, not on the history of our subject. For correct references before 1965, we refer the reader to the great encyclopedic handbook articles of Truesdell & Toupin (1960) and Truesdell & Noll (1965). These articles do not discuss plasticity; for the early history of that subject we refer the reader to the books of Hill (1950) and Malvern (1969). For more recent work, we attempted to cite the contributions most central to our presentation, and we apologize in advance if we have not done so faultlessly.

Our Debt
We owe much to the chief cultivators of continuum mechanics and thermodynamics whose great work during the years 1947–1965 led to a rennaisance of the field. Their names, listed chronologically with respect to their earliest published contributions, are Ronald Rivlin, Clifford Truesdell, Jerald Ericksen, Richard Toupin, Walter Noll, and Bernard Coleman. With the exception of plasticity theory, much of this book stems from the work of these scholars – work central to the development of a unified treatment of continuum mechanics and thermodynamics based on (a) a precise statement of the balance laws for mass, linear and angular momentum, and energy, together with an entropy imbalance (the Clausius–Duhem inequality) that represents the second law of thermodynamics; (b) the unambiguous distinction between these basis laws and the notion of constitutive assumptions; and (c) a clear and compelling statement of material frame-indifference.

We are grateful to Paolo Podio-Guidugli, Guy Genin, and Giuseppe Tomassetti for their many valuable comments concerning the section on plasticity; to B. Daya Reddy for his help in developing material on variational inequalities for plasticity; and to Ian Murdoch for extensive discussions that expanded our understanding of the frame-indifference principle. Others who have contributed to this work are Paolo Cermelli, Xuemei Chen, Shaun Sellers, and Oleg Shklyaev.