Index

adiabatic amplification, 25, 65
adiabatic amplification of a periodically modulated signal, 295
adiabatic amplification of solitons, 283
adiabatic soliton narrowing, 181–2
all-optical transmission systems, 53
amplification period, 27, 53
amplified spontaneous emission in erbium-doped fibre amplifiers, 155
amplified subpicosecond dye laser system, 391
asymptotic properties of soliton propagation, 94
autocorrelation technique, 36
bandwidth-limited amplification, 444
beam propagation method, 109
birefringence, 314, 315, 325
bit error rate measurement, soliton transmission over 400 km, 192
blackness parameter, 383, 390, 396, 401
black solitons, 381, 382, 394
bound solitons, 76
bound state of N = 2 soliton, 110
boundary conditions, 82
breakdown of standard NLS equation, 403
break-up of high-order solitons, 251–8
high-power dark solitons, 403
soliton bound state, 129
breathers, 110
bright solitons, 16
schematic diagram 382
Brillouin scattering, 1, 62, 314, 411
cascade Raman Generation, 221
cascade Raman soliton laser, 436
chirped pulses, 32, 75, 85
circularly birefringent fibre, 323
coherent communication systems, 416
colliding pulse mode-locked ring dye laser, 394
collisions of solitons, effect on pulse arrival times 57–8
color center laser, 38, 62, 199
color center laser NaCl, 164, 170
color center laser KCl, 170
colored solitons, 251
complementary pair of gray solitons, 391, 401
conserved quantities for the NLS, 80
correlation length, 361
counter-propagating pump geometry, 437
coupled non-linear Schrödinger equation, 316–26
cross-phase modulation, 57, 221, 227, 451
cross-phase modulation induced modulational instability, 416–20
cubic terms of Hamiltonian, 330
dark and bright solitons, differences, 389–90
dark optical solitons, 378
dark pulse solitons, 378, 382
dark soliton solutions to NLS, 381–3
dark soliton collisions, 406
dark soliton interaction, 390
dark soliton propagation, 390
dark soliton propagation at high powers, 401–5
dark solitons, 2, 300
and coherent communication, 406
depth of modulation, 20
theoretical derivation, 19
with finite duration background, 383–9
decay of femtosecond high-order solitons, 251–8
delayed non-linear response, 253
Index

delayed response, Raman effect, 47
dielectric constant, 5
dielectric response, 317
difference frequency mixing, 179
dimensionless dispersion parameter, 380
diode laser InGaAsP, 164
directional couplers, 369
discrete coupling, 96
dispersion-flattened fibre, 287–9
dispersion,
 linear, 5
 linear higher-order, 15, 33
 non-linear, 5, 15
 dispersion-shifted fibre, 164, 430
dispersion tuning, 431
dispersive wave, 409
dispersive wave component, 342
displacement vector \mathbf{D}, 5, 7
dissipation, 7
distortion parameter, 134
distributed amplification, 26
distributed coupling, 96
distributed feedback diode lasers, 183
distributed gain, 168
dual shape core fibre, 187
dye amplifier system, 394
dye laser, 199
dynamic soliton communication, 169, 189–94
effect of absorption on soliton propagation, 89–93
eigenvalues and soliton interactions, 143
eigenvalues of $N = 1$ soliton and random frequency noise, 87
eigenvalues of $N = 1$ soliton with random walk frequency noise, 87
elastic soliton–soliton collisions, 73
electronic polarisability, 213
eptically birefringent fibres, 372
evelope equation of lightwave in fibre, 4
evelope solitons, 2
evelope equation, 4
erbium-doped fibre amplifier
 adiabatic gain narrowing, 179–82
 as optical repeaters, 155
 as preamplifiers, 155
codoping with Al_2O_3, 179
femtosecond pulse amplification, 176–82
gain coefficient, 156
gain factor pump wavelength dependence, 160
gain versus input signal power, 157
gain versus pump power, 157
general features, 152
multi-wavelength operation, 170–6
single-soliton amplification, 164
small-signal gain, 156
soliton collisions, 170–6
soliton transmission, 164
steady-state gain saturation, 163
ultrashort low doping, 185–9
even symmetry dark pulses, 398
non-linear propagation, 390
on finite background, 389
extreme compression of solitons, 257
femtosecond pulses, higher-order terms for, 34
fibre loss, 15, 25, 32
fibre Raman Amplification Soliton Laser (FRASL), 431
fibre grating pulse compressors, 378
fibre group velocity dispersion, 32
fibre loss perturbation of NLS, 168
fibre Mach–Zender interferometer, 61
fibre, minimum loss, 30
finite difference approximation, 81
finite grid in numerical analysis, 82
fission of soliton bound state, 237
four-photon mixing, 192, 413
four-soliton interactions unequal amplitudes, 147–9
frequency self-transformation of femtosecond pulses, 231
fundamental dark solitons, 378, 381
fundamental soliton, 34
fundamental soliton generation using Raman self-scattering, 267–82
fundamental soliton power, 34, 334
gain bandwidth of distributed erbium-doped fibre amplifier, 187
gain switched diode lasers, 182, 183
general dark soliton solution, 381
generation of trains of non-interacting solitons, 291–302
Gordon–Haus effect, 55, 64, 66
grey solitons, 382, 394
grey soliton spectrum, 396
group velocity, 6, 9
group velocity dispersion, 1
negative, 3, 10
Hamiltonian deformations, 315
Hamiltonian of the NLS equation, 328
Hamiltonian perturbations, 329
high-order solitons, 281
high-order soliton break-up, 426, 431
high-order solitons periodicity, experimental verification, 37
higher-order dispersion, effect of, 332–46
higher-order effects on soliton decay, 254
Index

imaginary part of Raman susceptibility, 274
induced modulational instability, 26, 302, 413
initial value problems, 84–88
instability of multi-soliton pulses, 238–44
instantaneous frequency, 75
integrated fibre Raman soliton laser, 432
intensity autocorrelation, 413
intensity cross-correlation, 395, 398
interaction length, 223
intra-pulse Raman scattering, 4, 22, 24
, 426, 440
intra-pulse Raman scattering, retarded
non-linear response, 14
inverse scattering method, Zakharov and
Shabat, 2, 24, 73
inverse scattering theory, 76
Kerr coefficient, 1, 5, 10, 31, 323
Kerr effect, Kerr coefficient ρ, 1, 10, 31, 39
Korteweg–de Vries (KdV) equation, 2, 24
Kramers–Kronig relationship, 233
large-gain perturbations, 437
Lax criteria, 16
Lie transformation, 330
linear dispersion, 75, 326
linear loss, 314
linearly birefringent fibre, 323
local amplification, 26
local frequency, 75
longitudinal relaxation time, 213
lumped gain, 168
Mach–Zehnder interferometers, 96–9, 370
material dispersion 359
maximum compression rate, 225
Maxwell’s wave equation, 317
Maxwell’s equation, 5
microwave spectra, soliton loop
experiments, 64
mode-locked color centre laser, 38
modulational instability, 3, 20, 201–02,
238, 295, 410
and c.w. lasers, 412
and soliton pulse train evolution, 26
characteristic length, 202
critical frequency, 410
cross-phase modulation induced, 416
maximum amplitude growth rate, 410
oscillators, 435
relationship with soliton formation, 21
sideband frequency, 21
spatial growth rate, 21
multi-soliton break-up, 209
multi-soliton compression, 202, 210, 267,
277–82
multi-soliton propagation, 209–12
multi-soliton transformation, 229
multiple soliton interactions, 140–51
four equal amplitudes, 140–2
three equal amplitudes, 140–2
unequal amplitude pulses, 142–3
mutual interaction of solitons, 128
N-order solitons, 35
N-soliton oscillations, 333
N-soliton pulse, self-compression, 243
N-soliton solutions to NLS, 333
N = 2 soliton, 35, 41
N = 24 soliton, 177
Navier–Stokes equation, 326
Nd:YAG laser 1.32 μm, 411
Nd:YAG lasers 1.064 1.32 μm operation,
199, 206
negatively dispersive grating pair delay
line, 420
noise bursts, 439
non-adiabatic amplification, 25, 164, 299
non-linear dispersion, 7
coefficients of, 13
higher order, 7
non-linear dissipation, Raman effect, 15
non-linear eigenmode, 315
non-linear fibre devices, 95
non-linear index, 380
non-linear length, 211
non-linear optical loop mirror, 100
non-linear polarisation, 5
retarded response (see intra-pulse
Raman scattering), 7
non-linear pulse interaction, 205
non-linear Raman cubic susceptibility, 230
non-linear Raman response time, 215
non-linear Schrödinger equation (NLS),
2, 5, 10, 74, 108, 267, 295, 314, 333,
379
basic form, 33
conserved quantities, 19
effect of higher-order non-linearity, 108
effect of high-order dispersion, 108
higher order terms, 3, 21, 22
integrable solutions, 16
normalised form, 14
N-soliton solutions, 17
with slowly varying dispersion, 283
non-linear susceptibility, 272–73
non-linear spectral transform, 328
non-linear transformation of solitons by
Raman amplification, 221–8
nth order non-linear susceptibility, 197
non-topological soliton, 20
numerical analysis of NLS, 81–4
numerical shooting method, 333
Index

optical fibre Kerr gate 369
Painlevé analysis, 343
parametric oscillator, 199
parametric oscillator, synchronously pumped, 301
parametric soliton laser, 435
perturbations to the NLS, 88–95
perturbed NLS equation, 168
physical interpretation of two-soliton interaction, 118–20
Poincaré–von Zeipel method, 330
polarisation-maintaining fibre, 346
polarisation, relation to electric field, 197
polarisability, 317
polarisability, non-linear contribution, 321
potential bandwidth of a communication system, 83
propagation of fundamental black soliton, 395
properties of high-order dark solitons, 387
pulse area, 134
pulse compression using high-order soliton effects, 44
pulse narrowing, 33
pulse propagation near zero dispersion, 325
pulse train generation at high repetition rates, 302
pulse walk off, Raman generation, 219
pulsedwidth measurement using second harmonic generation autocorrelation technique, 36
radiation energy, 77, 78
Raman amplification, 23, 53, 61–6, 378, 403
Raman amplification, quasi-static regime, 216
Raman amplification of solitons, 436
Raman amplification, transmission systems, 53
Raman effect, delayed response, 47
Raman effects, 314
Raman gain, 437
Raman gain, bidirectional pumping, 54
Raman gain, non-uniform, 53
Raman noise, 58
Raman non-linearity, 276
Raman non-linearity and higher-order solitons, 235
Raman pulse formation from noise, 220
Raman response function, 233, 271, 275
Raman response time, 215, 230
Raman scattering, 1, 2, 5
Raman self-action dispersionless regime, 218
Raman self-action dispersive regime, 218
Raman self-frequency shift, 199, 203
beyond slowly varying envelope approximation, 222–8
Raman self-pumping, 270
Raman self-pumping of dark solitons, 403
Raman self-scattering, 253, 267, 270, 277
Raman self-transformation of solitons, 238–44
Raman soliton generation, pump pulse in the anomalously dispersive regime, 198–206
Raman solitons, 199
Raman solitons in fibre, theory, 212
Rayleigh scattering, 89
real part of Raman susceptibility, 274
reversal in non-linear systems, 73
reduction of soliton interaction by third-order dispersion, 128
relaxation time of electron non-linearity, 276
robustness of solitons, 326–32
Sagnac interferometer (all-fibre), 99–105
second-order dispersion length, 361
self-action and femtosecond pulse formation, 199–209
self-action in femtosecond pulses, 254
self-compression (focus) point, 268–9
self-compression and femtosecond pulse generation, 268
self-compression and soliton shaping, 431
self-compression of high-order solitons, 251–8
self focusing, 76
self-induced Raman scattering, 4
self-maintaining pulses, 76
self-phase modulation, 32, 76, 198
Sine–Gordon equation, 74
single bright soliton, 77
single dark soliton, 76
single-pass cascade Raman soliton generation, 428
single-pass soliton Raman generation, 421
six-soliton interactions, unequal amplitudes, 147–50
slowly varying envelope, 322
slowly varying envelope approximation, 214
small signal gain regime, 437
soliton acquisition of velocity, 130
soliton amplification in erbium-doped fibre, 152
in ultralong distributed erbium-doped fibre, 185–9
long amplification periods, 56
Index

soliton power, 24, 34, 164
soliton propagation and random phase noise, 84, 85
at zero dispersion point, 339
in region of zero dispersion, 280
soliton pulse area, 134
soliton pulse distortion parameter, 134
soliton pulse shadows, 372
soliton pulselwidth, 24
stabilisation, 262
soliton-Raman continuum, 410, 416, 427
effects, 409
evolution from modulational instability, 423, 425
generation, pump in normal dispersion, 428
generation, 420
oscillators, 431
soliton reconstruction via high Raman gain, 437
soliton self-frequency shift, 270, 400
experimental clarification, 45
perturbation to NLS, 168
rate, 48
suppression, 442
theory, 230
see also intrapulse Raman scattering
soliton–soliton interactions, 106
soliton speed, 17, 23
soliton stabilisation due to birefringence, 347
soliton switches 369–76
soliton switching, 95–105
soliton transmission, 26
in non-linear optical loop mirror, 101–05
long distance 6000 km, 61–6
soliton transmission system, advantage over linear system, 28
soliton transmission systems, 23, 53
design examples, 59
soliton trapping, 182
soliton velocity, 110
distortion due to periodic amplification, 136–7
solitons absorption length less than soliton period, 95
soliton adiabatic behaviour, 27, 24, 18
solitons and fibres with axial inhomogeneity, 359–69
solitons and linear birefringence, 346–59
solitons and linear frequency chirp, 84
solitons and stimulated Raman gain, 94
solitons experimental discovery, 30
solitons gain length less than soliton period, 95
solitons in presence of birefringence, 314
solitons in presence of gain, 94–5
solitons in presence of higher order dispersion, 314
solitons non-linear supposition, 35
solitons pulsewidth, peak power relation, 23
self-action effects, 215
solitons with periodically varying pulse energy, 54
spatial masking, 394
spectral self-shifts of dark solitons, 405
spectral windowing of gain switched diodes, 182
split step Fourier method, 82, 109
stimulated Raman scattering, 192, 193, 409
effect of SPM and GVD, 221
in non-linear dispersive medium, 212
mathematical description, 271
non-linear dynamics with dispersion self-action, 221–8
pump in normal dispersion regime, 206–9
self-mode locking, 220
spectral development with fibre length, 208
stimulated Brillouin scattering, 192
stochastic initial profiles and soliton distribution, 84
Stokes losses, 272
streak camera detector (picosecond resolution), 166, 201
subpicosecond dark pulses, 392
subpicosecond pulse generation, 177
suppression via high-order soliton generation, 177
subpicosecond soliton amplification, 176
superposition of solitons, 77
terahertz pulse repetition rates, 291
third-order dispersion, 287, 333
third-order dispersion length, 361
third-order non-linear polarization, 271
third-order susceptibility, 192
three-soliton interactions, unequal amplitudes, 147–8
time-dependent Raman response function, 403
time-division multiplexing, 183
topological soliton, 20
transformation of multi-soliton pump into fundamental Raman soliton, 225
transient dynamics of Raman pulses, 219
transmission characteristics of non-linear optical loop mirror various pulse inputs, 105
transverse relaxation time, 213
two-colored soliton transmission and collision, 175–6
two-soliton breakup, 336
two-soliton interactions, 108–26
effects of higher order dispersion, 126–33
equal amplitudes and phases higher-order dispersion, 126–33
minimum separation, 125, 127
periodic amplification unequal amplitudes, 137–9
period of oscillation, 112–15, 123
physical interpretation, 118–20
pulse separation with fibre length, 124
with equal phases, 111–12
with unequal amplitudes, 120–3
with unequal phases, 115–18
two-soliton periodicity, 338
ultimate compression of pulses in a non-linear dispersive medium, 245–50
ultrashort light-controlled optical fibre modulator, 391
ultrashort pedestal free solitons, 441
uninteracting solitons, 298
variation of second-order dispersion coefficient, 360
wave envelope, 8
waveguide dispersion, 9, 32, 359
weakly non-linear devices, 96
WKB form, 93
YSGG:Cr laser, 199, 206
zero dispersion, pulse propagation at, 56