Abrasion resistance of borided steel, 283–284
Abrasion resistance of vanadised steel, 283–284
Abrasion wear, 278–287
Abrasion wear resistance of diffusion hardened steels, 283–285
Abrasion wear resistance of hard anodised aluminium, 233
Abrasion wear resistance of plasma sprayed WC-Co, 284–285
Abrasion wear resistance of plasma sprayed coatings, 280–283
Abrasion wear resistance of PVD-TiN, CVD-TiC & PVD-Cr-B, 285–287
Active screen nitriding, 57–60
Adhesive coating failure (in-vivo), 472–473
Adhesive fracture wear (coated tools in machining), 369–372
Air intake (GTE), 423–425
Aluminising (calorising), 91–100
Aluminising (hot dip), 127–134
Anodic coating/cathodic substrate (corrosion of), 305–309
Anodic current variation during sliding contact, 315–317
Anodising (Anodizing), 231–238
Antagonism (in corrosion-wear), 314–315
Appendix A, 481–487
Applications – see SE Applications
Aqueous corrosion pathways (Cr-Ni plated steel), 140–141
Arc source (for PVD ion plating), 179–182
Arc wire spraying, 201–202
Archard wear equation, 278
Atmospheric corrosion, 125–130
Atmospheric plasma spraying (APS), 203–207
Attrition wear (adhesive fracture wear in machining), 369–372, 373–376
Auto catalytic plating, 149–152
Auto engine applications, 387–422
Average stresses on cutting tools, 331–334
Axial fed plasma torch, 205–207
Bias (electrical) effect on PVD coating microstructure, density and substrate adhesion, 174–176, 191–192
Binary phase diagrams, 481–487
Bio-medical implants, 449–480
Bone integration (implants), 462–463
Boost diffuse (aluminising), 99–100
Boost diffuse (carburising), 70–74
Boride coating via PVD, 378–380
Boriding, 81–90
Boriding technology, 86–90
Boron excess (after boriding), 88–90
Boundary lubrication, 388–389
Built-up-edge (during machining two phased metals), 330–333
Bypass air flow (GTE), 424
Cadmium plating, 146
Calorising (aluminising), 91–100
Cam follower wear, 406–408
Carbonitriding, 75–76, 298
Carburising of steels, 57, 59, 70–75, 276, 291, 293–300
Case depth (definitions), 38–39
Cathodic coating/anodic substrate (corrosion of), 303–309
Cathodic coating/anodic substrate (corrosion of), 303–309
Ceramic dip (slurry) coating, 153–154
Chemical conversion coatings (other), 242–243
Chemical vapour deposition, 154–172
Chip morphology (in machining), 330–331
Chromating, 243
Chromising (chromiding), 107–108

© in this web service Cambridge University Press

www.cambridge.org
Index

Chromium boride coating (wear & corrosion of), 285–287, 379–380
Chromium carbonitride (CrCN) coated Co-Cr in-vitro wear, 473–475
Chromium nitride (Cr2N) by PVD – wear of, 414–417
Chromium nitride (CrCN) coated Co-Cr in-vitro wear, 473–475
Chromium nitride (CrCN) coated stainless steel (corrosion wear), 310–313, 317–320
Chromium nitride (CrN) deposition by PVD, 182–183
Chromium plating, 138, 392, 394, 395
CKS coating, 393–395
Cladding, 250–254
Closed field magnetron sputtering, 185–187
Closed loop partial pressure control (used in reactive sputtering), 182–183
CMAS attack (of GTE blades), 441–444
Coated cutting tool wear patterns, 326–328
Coated hip resurfacing implant device, 472–473
Coated sialon tools, 352
Coating defects (PVD), 181–182
Coating defects (thermal spray), 195–198
COC biomedical implants, 452
Co-deposited electrolytic-electrophoretic coating, 152–153, 393–394
Coefficient of friction (µ), 18–19, 287–288, 388–389
Cohesive fracture wear (coated tools in machining), 369–373
Cold spraying, 210–211
Columnar grains in CVD and PVD coatings, 187–193
Columnar porosity (Zone 1) in thick PVD coatings, 187–193
Columnar porosity anodised aluminium, 231–233
Combined deposition/diffusion surface engineering, 10–13, 212–213, 438–441
Combustion section (GTE), 423–427
Compound layer (nitride and nitrocarburised steels, influence on RCF), 31, 42, 55, 67, 283, 284, 290–295, 299–300
Compression section (GTE), 423–427
Conformal contacts, 19–21
Contact mechanics, 13–25
Contaminants in GTE fuels, 423–424
Conventional anodising of aluminium, 231–234
COP biomedical implants, 452
Corrosion, 303–309
Corrosion (in-vivo) of Morse taper/trunnion, 450–452
Corrosion-wear, 309–320
Counterformal contacts, 19–21
Crack dimension (2c), 221–223
Cracks due to tensile residual stress in CVD coatings, 218–221
CrN or Cr2N, 182–183, 402–405, 414–417, 473–475
Crooke’s dark space, 52, 57, 58
Crystal orientation (texture) of CVD/PVD coatings, 170–172
Cutting edge plastic deformation during machining, 327–328, 344–347
Cutting tool applications, 324–386
Cutting tool wear, 327–329, 343–373
CVD coated carbides, 160–162, 343–350
CVD-Al2O3 (alumina), 163–165
CVD-boron, 168–169
CVD-coating material types, 155, 156–157
CVD-coating nucleation, growth, microstructure & topography, 167–172
CVD-coating set-up – schematic, 158
CVD-cubic boron nitride (Cbn), 167
CVD-diamond, 167
CVD-Ti(CN), 163–164
CVD-TiC, 159–162
CVD-TiN, 162–163
CVD-W13C & W17C, 165–166
Dark space, 52, 57, 58
Delamination wear, 412–414
Delta ceramic, 459
Depth-property profiles, 10–13
Detonation (D) gun spraying, 198–199, 207–208
Diamond-like-carbon (DLC) coated Ti-6Al-4V bio-implant failure, 475–476
Diamond-like-carbon (DLC) coating – friction in lubricated contacts, 419
Diamond-like-carbon coating wear, 411–420, 475–476
Diffusion coatings, 91–111, 427–438
Diffusion profile (effect of time), 37–39
Diffusion rate comparison, 35–36
Diffusion theory, 35–39
Diffusion/dissolution wear, DDW, of cutting tools, 350–357
DLC hardness, 29–32, 410–411
Dry contact wear, 289–293
Duplex surface engineering, 212–213, 439
Dynamic saturation zone (in metal machining), 350–357
EB-PVD t-ZrO2, 438–441
Elastic contacts, 13–26
Elastohydrodynamic lubrication (EHL), 388–389
Electric arc vapour source, 179–182
Electrode potential (effect on aqueous corrosion wear), 315–320
Electrode potential (effect on sulphidation), 431–433
Electro-galvanizing, 147–148
Electroless nickel plating, 149–152
Electrolytic-electrophoretic plating, 152
Electron beam cross-linking, 255–256
Electron beam surface alloying (EBSA) – see laser surface alloying
Electron beam vapour sources, 179–180
Electrophoretic coating, 152
Electroplating, 136–149
Electroplating topography, 169–172
Enabling surface engineering, 5–9
Enamel coating, 153
Engineering surfaces in reality, 5–9
Enhanced substrate current density in PVD, 184–187
Enthalpy content of plasmas for spray deposition, 203–205
Equaxed grains in CVD coatings, 161, 217
Equilibrium diagrams (phase diagrams), 481–487
Erosion wear, 270–278, 441–446
Eta phase (η-phase), 161–162, 373–375
Evaporant source poisoning, 182–183
Evaporation versus ion plating, 173–176
Exhaust section (GTE), 423–424
Failure tiles, 1–2
Fan blade (GTE), 423–424
FEM analysis of surfaces, 20–24
Fick’s 1st Diffusion law, 356
Fick’s 2nd Diffusion law, 38
First yield (position of), 13–20
Flame hardening, 243–244
Flame spraying, 199–201
Flank face wear, 343–345
Flow chart for hot dip processing, 121
Flow chart for materials manufacture (before SE), 4–5
Fretting of bio-implants, 453, 463–464
Frictec, 250
Fricction coefficient, 18–19, 287–288, 388–389
Galvanic corrosion, 303–309
Galvanic series, 303–305
Galvanising (hot dip), 123–125
Galvannealing, 124–125
Gas turbine engine (GTE) applications, 423–448
Gaseous boriding, 88–90
Gaseous carbo-nitriding, 75–76
Gaseous carburising, 70–75
Gaseous nitriding, 48–50
Gaseous two-stage aluminising, 99–100
Gear contacts, 19–21, 293–300
Glow discharge plasma to arc transition, 55–57
Gold plating, 148–150
Grain pull-out of ceramic implant bearing surfaces—see also attrition wear, 459–461
GTE (gas turbine engine) basics, 423–427
GTE chemical attack of, 427–438, 441–443
GTE erosion, 442–446
GTE pressure ratio, 426
GTE temperature profile, 425

Index

Hard anodising of aluminium, 233–234
Hardfacing—see Weld hardfacing
Hardfacing materials, 252
Hardness testing, 29–33
Hardness-depth profiles (characteristic shapes), 10–13, 47, 61, 466
Hertz cone cracks, 271–273
Hertz contact stresses, 15–25
Hertz contacts, 13–25
Hertz pressure, 15–25
Hertz shear stress (τ), 15–20
Hertzian failure, 13–14, 20–25, 467–468
High speed galvanising, 123–125
High speed tin plating, 141–143
High velocity spraying—see HVOF and HVAF
HIPIMS, 183–184
Homologous temperature, 156–157, 187–193
Hot corrosion, 427–438
Hot dip aluminising (Types 1 & 2), 127–136
Hot dip coating, 116–136
Hot dip galvanised steel microstructure, 123–127
Hot dip tin, 136
Hot hardness, 341–343
Hot spot formation in sliding contacts, 289–291
Hot stamping (process chain), 131–134
HVAF, 209–210
HVOF, 209–210
Hybrid PVD-CVD, 193–194
Hydrodynamic lubrication (HL), 388–389
Hydroxyapatite—also termed hydroxyapatite (HA), 462–463
Industry applications of CVD and PVD, 194–195, 324–386, 399–406
Internal stress, 214–221
Interstitial diffusion, 35–53
In-vivo damage, 454–460
Ion implantation, 60–61, 263–265
Ion plating, 173–178
Ionic bombardment, 52–53
Iridite process, 243
Ivadising, 175
Kirkendall porosity (after plasma boriding), 88–90
Knoop hardness (HK)—see nomenclature list
Lambda ratio (η), 389
Large area electron beam surfacing, 255–256
Laser alloyed cast iron auto engine rocker arm, 257–259
Laser alloying steel with boron, 260–262
Laser glazing, 262–263
Laser nitrided titanium, 259–260
Laser peening (shock hardening), 246–250
Laser power density/interaction time effect, 247
Laser scanning during SE, 254–255
Laser shock hardening—see laser peening
Laser solidification regimes, 257–258
Laser surface alloying (LSA), 257–262
Laser surface engineering & EBSA, 243–244, 246–250, 254–263
Laser vitrification, 262–263
Lateral cracks, 274
Lead plating, 146–147
Lead-tin plating, 146–147
LIH (Load invariant hardness), 29–31
Low temperature carburising, 77–80
Low temperature CVD (without plasma), 165–166
Low temperature nitriding, 77–80
LSA – see Laser surface alloying
Lubricated sliding contacts, 293–300
Lubrication and lubrication regimes, 293, 388–389
Machining metals and composites, 324–386
Macro-particles (in arc source PVD), 180–182
Magnetron sputtering & sputter deposition, 178
MAO – see micro-arc oxidation
Maps showing friction, pressure and temperature operational regimes, 287–288
Market price of metals, 118–119
Mechanical surface hardening, 244–250
Median cracks, 271, 274
Medium temperature CVD, 164–165
Meijering equation, 44
Metal transfer (galling), 400–401
Micro examination of worn cutting tools, 327–329
Micro-pitting in rolling/sliding contacts, 293–297, 300, 414–419
Micro-arc oxidation (MAO), 234–238
Microhardness, 29–31
Microstructure and topography zone models (vapour deposited coatings), 187–193
Microwave CVD, 166–167
Mixed lubrication, 388–389
Modified aluminiuming, 100–107
MOM biomedical implants, 452
MOP biomedical implants, 452
MTCVD-Ti(C,N) and Al2O3, 164–165
Multicomponent boriding, 90
Nanocomposite thermal sprayed coatings, 395–398
Nanohardness, 31–33
Nd-YAG (Neodymium yttrium aluminium garnet laser, 255
Nickel alloy development to resist creep, 91–95
Nickel plating, 138–140
Nickel plus chromium plating, 140–141
Nickel with particles (plating), 149–152
Nitriding (effect on fatigue), 40, 65
Nitriding (of other materials), 61–66
Nitriding (of steels), 40–48
Nitrocarburising of steels, 67–68
Nitrocarburising technology, 68–70
Notch wear (cutting tools), 363–369
Nozzle guide vanes (NGVs), 430
Oil additives, 390, 400, 408, 410
Oil lubricated contacts, 19–25, 293–300, 388–390
Open circuit potential (variation during sliding contact), 315–317
Open field magnetron sputtering, 185
Operating maps for surface engineered materials, 287–288
Osseo integration, 462–463
Overlay coating, 146–147, 438–441
Oxidation, 194, 238, 427–428
Oxidational (oxidation) wear, 240–242, 289–293
Oxinium, 465–470
Oxyfuel thermal spraying, 199–201
Oxygen diffusion hardening, 238–242, 470–471
Pack aluminiising (calorising), 91–107
Pack boriding, 87–88
Pack chromising, 107–108
Particle velocities in thermal spraying, 196, 205–206
Peening, 244–245, 246–250
PEO (plasma electrolytic oxidation), 233–238
Phase diagrams, 481
Piston ring coating wear, 399
Piston ring coatings, 388–406
Piston ring PVD coatings, 399–406
Plasma assistant CVD, 166–167
Plasma boriding, 88–90
Plasma carburising, 71–74
Plasma diffusion technologies (basics), 50–57
Plasma enhanced CVD, 166–167
Plasma immersion ion implantation (PIII), 60–61
Plasma nitriding, 50–60
Plasma nitrocarburising, 69–70
Plasma power density, 53–57
Plasma spraying, 203–207
Plasma temperature distribution in plasma spraying, 204–206
Platinum modified aluminiising, 100–104, 427–433
Platinum plating, 148–149
PMMA (cementing), 450–452
Polishing wear, 356–357, 365–367, 376, 402, 455
Polymer/aluminium stack machining, 377
Porosity in surface engineered layers, 195–199, 221–223
Powder coating, 211
Precious metal plating, 148–149
Precipitation hardening of electroless Ni-P coatings, 149–152
Pull-out – see grain pull-out
PVD, 173–193
PVD-coating material types, 156–157
Quick-stop method, 329–330
Index

Stress distribution on cutting tools, 331–334
Substitutional diffusion processes, 91–111, 427–438
Sulphidation, 423–438
Surface degradation, 269–323
Surface engineering – aluminium alloys, 5, 15, 17, 64–66, 251–257
Surface engineering – cemented carbides, 5, 324–386
Surface engineering – ceramics, 2, 5, 380
Surface engineering – cobalt alloys, 5, 78, 461
Surface engineering – composites, 5, 109–111
Surface engineering – magnesium alloys, 5, 17, 238
Surface engineering – nickel alloys, 5, 16, 91–100, 423–448
Surface engineering – polymers (plastics), 5, 66, 117, 255–257
Surface engineering – steels, 5, 14, 17, 35–90, 107–109, 326
Surface engineering applications – see ‘SE Applications’
Surface engineering background, 1–3
Surface engineering basics, 4–34
Surface engineering by other means, 231–268
Surface engineering deposition technologies, 116–230
Surface engineering depth-property profiles, 10–13
Surface engineering diffusion technologies, 35–115
Surface engineering process selection charts, 17
Surface engineering routes/paths, 5, 7, 8
Surface engineering triangle, 2–3
Surface engineering, where & when, 4–5
Surface preparation (before & after SE), 5–10, 121–122, 195–197
Surface roughness, 26–28

Table 4.2, 117
Table 3.16, 102
Table 3.15, 101
Table 3.12, 93
Table 3.10, 90
Table 3.9, 86
Table 3.8, 82
Table 3.7, 82
Table 3.6, 78
Table 3.5, 73
Table 3.4, 70
Table 3.3, 61
Table 3.2, 52
Table 3.1, 43
Table 3.9, 86
Table 3.10, 90
Table 3.11, 92
Table 3.12, 93
Table 3.13, 94
Table 3.14, 97
Table 3.15, 101
Table 3.16, 102
Table 4.1, 117
Table 4.2, 117

Rν, 27
Radio and high frequency plasma PVD, 183–184
Rake face (tool) wear and its development, 345–350
Rates of wear on flank compared to rake face, 349, 353, 375
Reactive PVD (ion plating or sputtering), 176–178, 182–183
Real engineering surfaces, 5–9
Residual (internal) stress, 214–221
Revision of human joint replacements, 452–453
Reynold’s number (NRe), effect on CVD, 167–169
RF CVD, 166–167
RF Plasma, 183–184
RF sputtering, 183–184
Robot assisted APS, 197–199
Roll hardening, 244–246
Rolling contacts and RCF, 25–26, 293–300, 413–420
Roughness (of surfaces), 26–28
Rν, 27
Running-in, 26–28
Salt bath nitrocarburising, 68–69
Scratch damage in-vivo & in-vitro, 454–460
Scratch test damage to coated materials, 175–176, 281–283
Scuffing (galling), 390, 394–395, 400–401
SE Applications (specific), Chapters 7 to 10
SE charts, diagrams, maps, 14–17, 288
Silicon modified aluminiumising, 104–107
Siliconising, 109–111
Silver plating, 116, 148
Sliding contacts, 20–26, 287–293, 464–476
Sliding/rolling contacts, 25–26, 406–415
Slurry coating, 104–107, 153–154
Slurry erosion of SE and untreated materials, 277–278
S-N behaviour, 40, 64–65, 293–300, 414–420
Sol-gel coating, 211–212
Solubility of tool materials in iron, 351
Solution nitriding, 80–81
Special carburising and nitriding for stainless steels, 77–81
S-Phase surfaces via deposition, 80, 183, 312, 318, 319, 400
S-Phase surfaces via diffusion, 77–80
Spray & fuse, 252–254
Sputter cleaning, 52–53
Sputter coating, 173–178
Sputter target poisoning, 182–183
Steam blued steel, 194, 238–239
Vapour pathways in evaporation and ion plating, 173–175
VHN (see Vickers hardness), 28–33
Vickers hardness and microhardness, 28–33
Vingsbo et al method, 30–31
Vitreous enamel coating, 153
VPN (see Vickers hardness)
VPS – see vacuum plasma spraying
Wear – abrasion, 278–287
Wear – adhesive (delamination) and cohesive fracture, 369–372, 373–376, 401–402, 412–414
Wear – attrition, 369–372, 373–376
Wear – discrete plastic deformation (DPD), 357–360
Wear – dissolution/diffusion (DDW), 351–357
Wear – erosion, 270–278, 441–446
Wear – fretting, 301–302, 363–369, 453
Wear – microabrasion wear (MAW), 360–363, 411–412
Wear – notch wear (cutting tools), 363–369
Wear – oxidation (oxidational) wear, 289–293, 363–367
Wear – pin holing, 414–416
Wear – sliding contacts, 287–293, 388–406
Wear of piston rings, 388–406
Wear – RCF (rolling contact fatigue pitting), 299–300, 415–420
Weld hardfacing (cladding), 252–254
Wheel on wheel testing, 287–293
Wire arc (arc wire) spraying, 201–202
Z (position of τ_{\max}), 13–25, 468
Zinal process, 213
Zinc phosphated steel, 242–243
Zinc plating, 147–148
ZrO$_2$ coatings – see ‘Thermal barrier coatings & systems’
ZrO$_2$ radio-opaque particles in PMMA cement, 458–459
ZTA (zirconia toughened alumina), 452, 459, 460