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1
The algebra of polynomials

1.1 Complex polynomials
1.1.1 Definitions
A complex polynomialis a function of the form

P(2) = Xn:akzk, (1.1)
k=0

where theay are complex numbers not all zero and wheres a complex
variable. We also use the terragalytic polynomial (reflecting the fact that
the polynomial is an analytic function) aradgebraic polynomial (since the
polynomial contains only algebraic operations on the variablé a, # 0 the
polynomial is said to havdegreen. In particular, a polynomial of degree 0
is, by definition, a non-zero constant. The function which is identically zero is
often regarded as being a polynomial of degre®. When theay are all real
numbers, the polynomid?(z) is called areal polynomial. Observe thaP(2)

is a real polynomial iff

P@=P@© (1.2)

for all z € C. From this it follows that, ifP(a) = 0 thenP (@) = 0; therefore
eithera is real orP has theconjugate pair of zerosa anda.

1.1.2 Number of zeros
Lemma A complex polynomial of degree n haismostn zeros.

The proof of this is an entirely elementary fact from algebra; this is to be
contrasted with the strong&mdamental theorem of algebra(see chapter 2)
which states that a polynomial of degnee> 0 has exactlyn zeros; the usual

1



2 1 The algebra of polynomials

proofs of this use methods of analysis or topology (it is not a result which
follows purely from the algebraic field property of the complex numbers). The
proof of the weaker statement is by induction. The result is trivial whenO.
Assume the statement proved for polynomials of degre#, wheren > 1, and

let P be a polynomial of degreegiven say by (1.1). EithelP has no zeros and
there is nothing further to prove, 8a € C such thatP(a) = 0. We then have

P@) _ P@-P@) _ Z ;ak _iakk S gl 1.3)

Z—a Z—a k=0 k=1 j=0

and the last expression is cleadypolynomial of degree — 1. Therefore by
the induction hypothesiB(z)/(z — a) has at mosh — 1 zeros and s®(z) has
at mostn zeros. The result follows by induction.

This result has a number of important consequences.

1.13

Uniquenesstheoremif P (z) and ((z) are polynomials of degree notexceeding
n and if the equation

P(2) = Q@ 1.4)
is satisfied at nt 1 distinct pointsthen P= Q.

For otherwise P — Q is a polynomial of degree not exceedingvith n + 1
zeros. We deduce the next result.

1.1.4
Theorem: Lagrange’s interpolation formula Let z, z,,...,z, 1 ben+ 1
distinct points and letw;, wy, ..., wh1 be arbitrary complex numbers (not

necessarily distinct but not all zero). Among all polynomials of degree not
exceeding n there is a unique polynomiglzPsuch that

Pm)=wx (I1<k=n+1). (1.5)

This has the representation

n+1 Q(Z)
PO = 2 "2y (1.6

where Q2) = [Toi1(z — z).
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By the previous result there is at most one such polynomial; on the other hand
the polynomial so represented is immediately seen to have the desired property.

1.15
An alternative formulation of Lagrange’s formula is the following.

Corollary Letz, 7, ...,2z1ben+1distinct points and let Q) = [[p1(z—
z). If P(2) is a polynomial of degree not exceeding n, then

n+1 Q( )

PO =2 P Gz =2y (1.7)

In other words we have an explicit method for determining the values of a
polynomial of degre@ in terms of its values at + 1 known points.

11.6

Example Let Q(2) = 21— 1 = [[_o(z— ax), Wherewy = €%/("+D gre the
(n + 1)th roots of unity. Then, iP(z) is a polynomial of degree not exceeding
n, we have

P@) = Fll > Plona@a) (1.8)

wheree,(z2) =1+z+---+2".

1.1.7 Representation for harmonic polynomials

A harmonic polynomial T(z) is a function of the fornl (z2) = Q(z) + P(2),
whereQ andP are analytic polynomials, and so is a complex-valued harmonic
function inC (the complex plane)l can be represented in the form

n
T2 =) arke" (z=re"). (1.9)
k=—n
T hasdegreen if eithera, ora_p, is non-zero. Note that a harmonic polynomial
is the sum of a polynomial in the varialdteand a polynomial in the variable
z. The polynomial is uniquely determined by the 2 1 coefficientsax. These
coefficients also determine uniquely ttniggonometric polynomial

T(E?) = i ae . (1.10)

k=—n
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Indeed, given this latter expression the coefficients can be recovered from the
formula

1 2 . .
a = —/ e T(E%Ndo (—n<k<n). (1.11)
277.’ 0

We can apply Lagrange’s interpolation formula to obtain a representation for a
harmonic polynomial as follows. L&} = 2"'/(2"+1)(0 < k < 2n) and set

Dh(@=2"+--+Z+1+2z2+---+ 2" (1.12)

Then,if T (2) is a harmonic polynomial of degree not exceedingve have

T(2) =

1 Z (€)Dn(Z42). (1.13)
This follows easily by applying example 1.1.6¢8° T (€?), which is a poly-
nomial of degree at mosin2n the variableg?. We obtain the above formula
on the unit circle. Since both side$the equation are harmonic polynomials,
it follows that the equality holds for all € C.

1.2 The number of zeros of a real analytic polynomial

121
Definition A real analytic polynomial is an expression of the form
m n .
P, y) =) ajxly® (1.14)
j=0 k=0

where the coefficients; \ are real or complex numbers and wherandy are

real variables. Theegreeof the terma; xx! y* is j + k provided thag; x # O,

and thedegreeof P is the largest of the degrees of the individual terms. Every
algebraic polynomial and every harmonic polynomial is real analytic and their
degrees earlier defined agree with the above definition.

1.2.2

Bézout's theoremLet P(x,y) = u(x, y) + iv(x, y) (with u andv real) be
a complex-valued real analytic polynomiathere u has degree m andhas
degree n, and suppose that u an@re relatively prime (i.e. contain no non-
trivial common factors). Then P has at most mn zerdS.in

Proof This is an algebraic result which is proved using linear techniques.
Firstly, we may note thaP(0, y) is not identically zero, for otherwisg is
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a common factor ofi andv. We then writeu andv in the form
m n
u(. y) =Y )y ux.y) =D Xk, (1.15)
k=0 k=0

whereuy are real polynomials ix of degree at mosin—k and v are real
polynomials inx of degree at most—k. Also, after an affine transformation of

the variables, we may assume thgtandv, # 0. (Affine transformations are

first degree real analytic polynomial mappings, which are bijective mappings
of C; for an account of these see chapter 2, section 2.7.21.) Now the equation
P =0 holds iff u = 0 andv = 0 simultaneously. Let us assume this is the case
at a particular pairx, y). We use themethod of Sylvesterto eliminate the
quantityy from the two equations(x, y) = 0, v(x, y) = 0. The method is to
observe that the followingh + n equations hold:

y'ux,y)=0 (O<pu=<n-1); yuXxy)=0 (O=<v=m-1)
(1.16)

Herey® = 1 by definition. Each of these equations can be interpreted as the
vanishing of a linear combination of te+ n quantities 1y, y?, ..., y™"1.
This implies the vanishing of the determinant of coefficients:

Uo(X) ui(x) uz(x) 0
0 Uo(X) ui(x) uzAx)| _

() w) vaX) 0 =0. 1.17)
0 vo(X) wvi(X) wva(X)

This example is the casa = n = 2. The determinanD(x) is a polynomial
in x. We will show that (a)D(x) does not vanish identicallgnd (b)D(x) has
degree at most miWhen these facts are established, it will follow that there
are at mosmn values ofx for which the determinant can vanish. For each
suchx there are only finitely many values gfsuch thatP(x, y) = 0. Thus we
obtain at most finitely many pointx(y) for which P(x, y) = 0. Because of
this we may now perform an affine transformation any() so that, after the
transformation to new variables, y’, the resulting polynomial has for each
fixed x” at most one zero iy’. (This is easily seen geometrically; e.g. a small
rotation will do.) It follows immediately from the above applied to the new
coordinates thalP has at mosinn zeros altogether, proving the theorem.

To prove (b) we letw; ; denote the terms of then(+ n) x (m + n) matrix
of coefficients and observe that each term is a polynomialivhose degree
satisfies

D(x) =

m—j +i 1<i<n),

—j+i (+1<i<m+n). (1.18)

degree ofw; j < {



6 1 The algebra of polynomials

Here we have taken the degree of the identically zero polynomial tedae
Now the value of the determinant is given by the formula

m-+n
lwij| = 2:(—1)(I H Wi (i) (1.19)
i=1
where the sum ranges over all permutati¢($ of the numbers 12, ..., m+n,

and wheres = 0 for even permutations angl=1 for odd permutations. It
follows that the degree of the determinant cannot exceed

n m-+n m-+n
D m—g@)+i)+ > (=) +i)=mn+ > (—¢(i)+i)=mn
i=1 i=n+1 i=1

(1.20)

sinced ¢(i) = > i, as¢(i) runs through the numbersn some order. This
proves (b).

To prove (a) we assume that the determinant vanishes identically and show
that this implies thati andv have a common factor, contradicting the hypothe-
ses. Firstly, we observe that the vanishing of the determinant is equivalent to
the vanishing of the determinant of the transpose matrix. Secondly, we observe
that the elements of the matrix are polynomialg ind therefore belong to the
field of rational functions irx. Because the determinant vanishes foxallve
may interpret this as the statement that the determinant of this matrix consisting
of elements of this field vanishes, as all the operations required to evaluate the
determinant are algebraically defined over any field. Therefore from the alge-
braic theory of determinants we can assert the existence of elemegiisof
the field not all zero and satisfying the set of equations

Uoao + voBo =0, Uiog + Ugarr + v1 0 + voB1 =0, ...etc
(1.21)

or generally

r r
D uwkak+ Y wkfc=0 (0<r<m+4n-1), (122

k=r—m k=r—n

whereay = 0 fork > nandgx = 0 fork > m. We now set

n—1 m-1
Aly) =D Y. B(y)=-)_ A" (1.23)
k=0 k=0

and note that by multiplying out and equating coefficients to zero the above set
of equations is equivalent to the single equation

uA—vB =0. (1.24)
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Since not bothA and B are zero, it follows from this equation that neithér
nor B is the zero element, as otherwise one ahdv is zero, contradicting the
hypothesis. Now the coefficients AfandB are rational functions ir; therefore
multiplying through by a suitable polynomial i3 we obtain an equation of the
same form withA and B polynomials in bothx andy. Furthermore, we may
divide out the equation by any common factorAdfand B. Thus we obtain an
equation of the above form witA and B relatively prime polynomials, where
the degree ofA in y is smaller than the degree ofin y and the degree d8
in y is smaller than the degree ofin y. We will show thatf = v/A =u/B
is a polynomial inx andy, which is then the required common factonoénd
v. Consider first the case whahis constant in the variablg, and so a pure
polynomial inx. B can be factorised as a product of irreducible polynomials;
hence it is enough to show that each irreducible faBaf B is a factor ofu.
Expandingu in powers ofy, this is true iff every coefficient af is divisible by
R. Write u = u; + Uy, whereu; consists of those terms in the expansiom of
whose coefficients are divisible By, andu, consists of the remaining terms.
Similarly, write A = A; + A.. SinceRis not a factor ofA, A, # 0. Thus we
havevB = Au = Aju; + AU + Axu; + Axuy, from which we see thad,u,
is divisible by R. This implies thau, = 0, as otherwise the lowest coefficient
of this product iny is divisible by R, but also is the product of a coefficient of
A, and a coefficient ofi,, which is not divisible byR. ThusB dividesu in this
case.

Returning to the general case, from the usual division algorithm for polyno-
mials we can write

v 0 u o
K—f-i-x, E—g+§ (1.25)

where f, g, p ando are polynomials iry with rational coefficients irx, and
where p hasy-degree smaller tha\ and o hasy-degree smaller thaiB.
Hence ay — oo, p/Aando/B — 0 and sof — g — 0. This clearly implies
that f = g. We therefore obtaim/A = ¢/B and so either (ijp = o= 0 or
(i) A/p = B/o.In case (ii) we see that we are back to the same problet for
andB that we had fou andv, but A andB have smaller degrees. Therefore we
may use an induction argument to deduce thandB have a common factor,
contradicting our legitimate assumption. It follows that case (i) holds arfd so
is a common factor afl andv. The coefficients of are rational functions ix,
but by multiplying through by the smallest polynomialn x to cancel out the
denominators of the coefficients, we find as above theivides bothA and
B. SinceA andB are relatively primef is a polynomial in bottx andy. This
proves (a) and so completes the proof @zBUut's theorem.
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1.2.3

Bézout's theorem can be used to put a bound on the number of zeros of a
real analytic polynomial even in the absence of algebraic information on the
polynomial. For example it may often be the case that on analytic or topological
grounds one can establish the finiteness of the number of zeros. In this case we
have the following result.

Theorem Let P(x, y) = u(X, y) +iv(X, y) be a complex-valued real analytic
polynomia) where u has degree m 0 andv has degree = 0. Then P has at
most mn isolated zeros @. In particular, if P has at most finitely many zeyos
then P has at most mn zeros@h

Proof The following argument is an adaptation of a method given by
Wilmshurst [72]. Ifm = 0, thenu is a non-zero constant and $bhas no
zeros; similarly ifn = 0. If m = 1, then either (il dividesv or (ii) u andv

are relatively prime. In case (ii)&out’s theorem shows th& has at mosh
zeros; in case (i vanishes exactly whamvanishes, which is on aline. Hence
P has no isolated zeros. Thus the theorem follows in this case. We proceed by
induction and assume the theorem is true for polynonuatsiV , whereU has
degree smaller tham andV has degree smaller thanlf u andv are relatively
prime, then BZzout's theorem gives the result. Therefore we may assume that
u andv have highest common factqr say, wherep is a real polynomial in

(x, y) of degree > 1. Thenu/p andv/ p are relatively prime polynomials of
degreesn — r andn — r respectively, and s€/p has at mostro—r)(n —r)
zeros. The remaining zeros &f are the zeros op. Now p is a real-valued
continuously differentiable function in the plane. It follows from the implicit
function theorem (see chapter 2) that at a zzab p either (i) p vanishes on

a curve passing throughor (ii) both partial derivativegp, and py are zero
atc. In case (i)c is a non-isolated zero d?. Thus ifc is an isolated zero of

P, which is also a zero op, thenc is an isolated zero gp, and so from case
(ii) the polynomialQ = p+ipx has an isolated zero etSincep has degree
andpy has degree—1, it follows by the induction hypothesis th@thas at most

r(r —1)isolated zeros. Hende has at mostrt—r)(n—r) +r(r —1) <mn
isolated zeros. The result follows by induction.

1.2.4 A complex approach

It is clear that BZzout’s theorem will be equally valid for a pair of complex
polynomialsu(z, ¢), v(z, ¢) of complex variablez and¢. From the two equa-
tionsu(z, ¢) = 0 anduv(z, ¢) = 0 we can use Sylvester's method to eliminate
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the variable;, obtaining a determinar2(z), which is an algebraic polynomial

in zwhose zeros contain thogdor which there exists a paie(¢) satisfying

the two equations. The maximum degredis the product of the degrees of
u andv. We can apply this result to our original problem of finding the zeros
of a complex-valued real analytic polynom#al P is a polynomial in the real
variablesx andy; by making the substitutions = 3(z+2),y = #(z—2), P
becomes a polynomid®(z, Z) in the ‘variables’z andz; in other words a real
analytic polynomial can be written in the form of a finite sum

Pz2) =) a2z (1.26)
T

where thea; x are complex numbers and the degreePois the maximum of

j + k over terms wher@, x # 0. This is clearly the restriction d?(z, ¢) =
>k @ik Ztor = . Toapply the Sylvester method of elimination we require
two equations. HoweveB(z, 2) = 0 iff P(z, Z) = 0; thus we eliminaté from

the two equations

which take the form

Y auglZ=0 Y apdi=o. (1.28)
ik ik

We obtain the determinant equati®{z) = 0, whereD is an algebraic poly-
nomial inz whose degree does not exca€gdwheren is the degree oP. D

is identically zero iff the above pair of polynomialsiarand¢ have a common
factor. We leave it as an exercise to show that this holds iff, wring u +iv

(u, v real),u andv have a common factor. Thus in this formulation we have lost
the distinction between the possible different degreesasfdv, asn is clearly

the larger of these two degrees. On the other hand we have constructed an alge-
braic polynomialD(z) whose set of zeros contains all the zeros of the original
real analytic polynomiaP. In fact, if (z, ¢) is any pair satisfying the above two
equations, theiD(z) = 0. In general it need not be the case thatgtsatisfies

¢ = Z, and thereford is likely to have more zeros tha?. However, there are
certainly cases wher® and P have the same zeros. Indeed this is the case if
P is itself an algebraic polynomial: theb = cP", wherec is a constani 0.

Of course, if we count multiplicities, thed hasn? zeros, whereaB has only

n zeros. We will give an example in chapter 2 (subsection 2.6.11) wbdras

n? simple zeros all of which are zeros Bf
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It is worth recording here the form of thexZ 2n matrix of whichD is the
determinant. We have

P(Z, 2) = Zaj,kij Zk = Z <Zaj,kzk>2j = Z (Zaj,kZJ)zk (1.29)
jk j k k j

and so
n . n .
Pz2)=) b@7. Pz2=) @7, (1.30)
=0 =0
where
n—j n—j
bj@ =) aZ. c¢@=) a;z (1.31)
k=0 k=0
The terms of the matrix are given by
wij=Dbj fori <j<n+4+i and 1<i<n,
Wij =Cj_jyn fOri—n<j<i and n+1<i <2n,
wij =0 otherwise (1.32)

As recorded earlier these relations imply that the maximum degreg jofs
given by
n—j+i (i<j<n+4iandl<i<n),
—j+i (—-n<j<iandn+1<i <2n).
(1.33)

degree ofw; j < {

Otherwise degree af; ; = —oo (so trivially satisfies the above inequalities).
We then have

2n
D@ =) (-1 [ wien (1.34)
i=1

where the sum ranges over all permutatigiii of the numbers 12, ..., 2n,
and wheres = 0 for even permutations and = 1 for odd permutations.
Each producf ™, wi »i) has degree not exceedidg!,(n — ¢(i) + i) +
Z, npa(—o()+1) = n2, with equality only if every termw 4 in the product
attains its maximum degree— ¢(i) +i for1<i <nor—¢(i)+i forn+1<

i <2n.

As an application of these remarks, supposefhiads coefficients;  where
ajn—j =0forl<j <nandagn # O; in other words the only term of highest
degreen in the expansion oP is the term inz". Thenbg(z) has full degrea,
andcy(z) has degree 0, but the remaining polynomigl&) (1 < j < n) and
Cj(2) (0 < j < n—1)have degree strictly smaller thar- j. It follows that the
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only permutation giving a product of degnefs the case(i) = i (1 <i < 2n).
ThusD(z) has exact degre®, and thereforé® has at mosh? zeros.
Collecting up the results of this subsection we have the next theorem.

125

Theorem Let P(z, Z) = u+iv (uandv real) be a complex-valued real analytic
polynomial of dgree n. Then the Sylvester resultar(izZfof P(z, ¢) andP(¢, 2)

is a polynomial in z of degree at most fEvery zero of Bz, ) is a zero of [{z);
indeed, if Rz, ¢) = P(¢,2) = 0, then (2) = 0. D(2) vanishes identically if,
and only if, u andb have a non-trivial common factor. Finally, if

P(z.2) = Q(z,2) + AZ, (1.35)

where Q is a real analytic polynomial of degree n and A is a non-zero
constant, then [¥) has exact degree’rand therefore P has at most @eros.
Indeed, in this caseP attains every valua at most 1# times and is therefore
an rP-valent mapping of the plane.

The final remark comes from applying the theorenPte- w. We shall see in
chapter 2 thaP of this form does actually attain every valug and so is a
surjective mapping of the plane.

1.2.6 The Sylvester resultant of P w

In studying the valence of a mappirg(z, 2) it is natural to consider the
Sylvester resultant foP — w, wherew is an arbitrary complex number. The
resultant will take the fornD(z, w, w), where this is an algebraic polynomial
in zand a real analytipolynomial inw. Furthermore, if° has degrea, then
as a real analytic polynomial n, D has at most degree This follows from
the fact that the only terms involving in the matrix are the terms — w and
Co — w, Sow only appears with degree 1in  if j =i forl <i <nandif
j =1 —=nforn+1<i < 2n.All other terms have degree 0 eto in w. For
any permutatiow of the numbers 12, . . ., 2n, there are at mostvalued such
that ()¢(i) =i wherel<i <nand (ii)¢(i)) =i —nwheren+1<i <2n.

1.2.7 Evaluating the Sylvester resultant

Letbg, by, ..., byandcy, cy, ..., ¢y be the generating elements of the2 2n
Sylvester matrix. Then the resultant can be written in the form
n
> -1y H Bg(i)—i Cotin)i (1.36)

¢ i=1
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summed over all permutations of the numbers 12, ..., 2n such that for
1<i<n

0<¢@)—i<n, 0<¢@+n)—i=<n. (1.37)

Note that, for each permutatian the sum of the subscripts of ths and the
cs is exactlyn?.

1.2.8 Further properties of the resultant

Letu andv be real analytic polynomials of degre@sndn respectively written
in the form
n

m
ux, y) =Y uwd)yS, vl y) =D w(x)y, (1.38)
k=0 k=0
whereun, # 0 andv, # 0. If the resultant is not identically zero, then the set
of equations

r r
Z Ur kot + Z k=% (O=<r=<m+n-1) (139
k=r—m k=r—n
can be uniquely solved far, and gk, whereay = 0 for k > n andgy = 0 for
k > m. Here the\, are given arbitrary elements in the field of rational functions
in X, and the solutionay andpgy are then also elements in this field. Writing

m+n—-1 n-1 m—1
A Y)= D MY, AX YY) =D k()Y B(X. )= A9y,
r=0 k=0 k=0 (1.40)

the above equations are equivalent to the single equation
uA+uvB = A. (1.41)

In other wordsif the resultant of u and does not vanish identically, then given
A of degree in y at most s n — 1 we can find a unique A of degree at most
n—1iny and a unique B of degree at mosthi in y to satisfy this equation

In particular, takingA = 1, we can find a unique p of degree at most i
and a unique q of degree at most-l such that

up+vg =1 (1.42)

Herep andg are polynomials iry with coefficients which are rational functions
in x. If R(x) is the lowest common denominator of these rational coefficients,
then we obtain the relation

UP+vQ =R (1.43)
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whereP = pR, Q = gRare now polynomials in botkandy. The polynomial
R(x) is a factor of the resultant: if we use the Sylvester matrix to solve the
equationup + vg = 1 for p andq, then, applying Cramer’s rule, the solutions
for each of the coefficients gf andq (expanded as polynomials i) will be

the ratio of two determinants; the numeratortighe determinant of one of
the minors of the matrix corresponding to the first column; the denominator
is the determinant of the matrix, i.e. the Sylvester resultant. Siracedv have
polynomial coefficients, it follows that the Sylvester resultant is a common
denominator of all the rational coefficientspéndg. Hence the lowest common
denominatorR is a factor of the resultant; R is a proper factor, then there is

a factor of the resultant which is@mmon factor of the determinants of each
of the minors corresponding to the first column.

1.3 Real analytic polynomials at infinity
1.3.1 Resolving the singularitythe blow-up method

Let P(x, y) be a real analytic polynomial of degrée The limiting behaviour
atinfinity of P can be determined by performiagequence of transformations,
which we now describe. Firstly, after a suitable affine transformation we may
assume that both the real and imaginary part® @, y) have full degreeN.

We then make the transformation

X=>1/X, Yy > y/X, (1.44)
obtaining
(1 y) _ QY
R(x,y)—P(X,X>— NI (1.45)

where Q(x, y) is a polynomial of degre®&l such thatQ(0, y) has degreeN.
Any finite limiting value of P at infinity is then a limiting value oRasx — 0
andy remains bounded. We expafin powers ofx, obtaining

N
D Quy)x¥

R(x,y) = |<=0X—N

Itis clearthatR(x, y) — oo asx — 0 andy remains bounded, unleg$endsto a
real zero ofQq(y); for otherwise the tern®o(y)/xN dominates the expression.
Thus to determine the possible finite limiting valuesPfwe will consider
x — 0 through positive values angl— a, wherea is a real zero 0iQq. We
write

(1.46)

Qk(y) = (y—a)*S(y) (0=<k<=N), (1.47)
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wherer is the multiplicity of the zer@ of Qy (if Qx(a) # 0, thenr, = 0); if
Qx = 0, for the purposes of this discussion we may take- +oco. Next, let
us consider the substitution

y=a-+txP, (1.48)

wherep is a positive number to be determined. Note that the mapping) (—
(x, t) is a 1-1 mapping of the half-plane> 0 onto itself. We obtain

N
R(x,y) =xN (Z a(y)tkapfk+k>. (1.49)
k=0

Now observe that, for small positive, pro < prc+k(1 < k < N) and the
dominating term i§y(a)t™ /xN—P", If prg = N andprg < pre + k(L <k < N),

then with the choicgo = N/ro we obtain the limiting value§p(a)t' (t real). If

rois odd, this is a simply described straight line through the origir;ig even,

it is a doubly described ray with endpoint at the origin. Otherwise, we choose
p > O to satisfypro = prj + j for somej andprg < pre + k(1 < k < N);

in other words

p = min J , (1.50)
fo—T;
where the minimum is taken over thopél < j < N — 1) for whichrg > r;.
We obtain
F(x,t)
xN=pro’
whereF(x, t) is polynomial int of degree at mod, and contains fractional
powers ofx — in fact is polynomial inx and xP. Note also that=(0, t) is a
polynomial int of degreerg, which contains only those powet's for which
pro = prj + j. Suppose now that = /v, wherep andv are relatively prime
natural numbers. Then with the substitutior= s” we obtain
A(s, t)

SUN—;LI'O ’

R(x,a+txP) = (1.51)

R(s",a+ts"*) = (1.52)

where A(s, t) is a polynomial ins andt and A(O, t) = F(0, t) has degreeo.
Furthermore, since the powetfs occurring inA(O, t) satisfy pro = prj + j,
we obtain
fo—T;= ﬂ, (1.53)
n
and, sincew andv are relatively prime andy — r; is an integery divides j
and sarg — rj is an integral multiple ob. It follows that A(O, t) has the form

A0, t) = t*B(t"), (1.54)

wherea is a non-negative integer ari{t) is a polynomial int of degree> 1.
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1.3.2

Now the form ofR after this transformation is of the same general type in the
variabless andt as it was in the variables andy, namely a polynomial irs

andt divided by a power o§. Therefore it is open to us to repeat this reducing
process. Indeed, it follows from our comparison principle (see 1.3.6 below) that
any finite limiting value ofR will be attained along some curye= a + txP,

with x — 0 andt remaining bounded, wheis a positive and indeed rational
number. On the other hari®’l - oo along such curves, ib is smaller than the
above minimum choice. Therefore, finite limiting values can only be attained
for either this or larger values @f. This implies that with our chosen minimum
value of p and the above transformation, limiting valueshotassociated with

the zeraa) will be attained withs — 0 andt remaining bounded (in fatt— 0

if the limiting value corresponds to a larger valug)f As before, each limiting
value will correspond to a real zerb,say, of the polynomialA(0, t). If the
multiplicity of the zerob is s, then we make a transformation= b + us?,
whereq is chosen according to the same minimum process with which we
chosep. Now clearlysy < rg < N; if 59 = rg, thenA(0, t) = c(t — b)", where

c is a non-zero constant, and therefdkgo, t) contains all powers of from

0 torg. It follows thatv =1 and so the power of in the denominator is at
mostN — ro. We see, therefore, that, if we continue repeating the process, at
each step either the degree of the leading term strictly decreases or the power
of the denominator strictly decreases by an integer amount. Thus eventually
the process will terminate in the following way. Using the original notation
Q(x, y)/xN as a standard form, the final transformation will take the form
y = a+ txP, wherep = N/ro. As earlier described either this will lead to

a line or ray of asymptotic values or this choice pwill coincide with the
minimum choicep = min(j /(ro —r;)). Following the transformation as before
we obtain a curve of asymptotic valuag, t), a polynomial in the real variable

t of degreerg > 1. Indeed, as the denominator is eliminated at the final step,
the sequence of transformations will send our original polynomitd a new
polynomialA(s, t). Itis clear that for the existence of asymptotic valuesitis both
necessary and sufficient that there exist such afinite sequence of transformations
from P to another polynomial. If we perform our construction for every real
zero of our leading term at every stage, we will obtain all possible asymptotic
values withx > 0 tending toco. We can obtain in this way a maximum of

N = degree ofP asymptotic value curves, which are polynomial images of
the real axis. Of course, if at one or other stage the leading @smo real
zeros, then the polynomial tends ¢o along the resulting tract. In a similar
way, to obtain the asymptotic values Bf with x < 0 tending to—oo, we
simply apply the same reasoning to the functierll]N Q(—x, y)/xN, again
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takingx > 0 and tending to 0. This gives anothérpossible asymptotic value
curves.

1.3.3 Repetition of asymptotic values

However, as we shall see, each asymptotic value af co is repeated along

quite separate tracts, and in general each asymptotic value curve appears twice
(except in one circumstance), either repeated or reversed. This is a conse-
guence of the fact that, according to the above reasoning, the asymptotic values
are attained as limits along rational algebraic curves of a particularly simple
type. To be specific, if we put together the sequence of transformations from the
initial R(x, y) to the final polynomialA(s, t), we obtain a single transformation

of the form

x =sY, y = ¢(s) + ts’, (1.55)

whereq and 8 are natural numbers and whepés) is a real polynomial of
degree< g; furthermore, the highest common factor of the powersagipear-
ing in the expressiom(s) + ts? is 1. In short, we have

R(s%, ¢(s) +ts?) = A(s, t). (1.56)

If ¢(s) = > o CkS<, then the coefficients, are zeros of successive leading
terms in our sequence of transformations. Note that the mappitigt (X, y)
is a 1-1 mapping of the half-plade > 0} onto the half-plang¢x > 0}. Indeed,
this is clearly the case at each stage of the resolution process, which consists
of blowing up a chosen zero into an entire line, the remainder of the line being
pushed off toxo. Furthermore, the mapping is 1-1 frds< 0} onto{x < 0}, if
g is odd, and ontgx > 0}, if g is even. The curvé\(0, t) is a limiting curve of
asymptotic values as— 0through either positive values®br negative values
of s. If g is odd, the approach through negative values wfll correspond in
the (, y)-plane to a tract iffix < O} diametrically opposite the constructedct
in {x > 0}, and therefore the asymptotic value curve is repeated in a completely
different portion of the plane. b is even, the curve will again appear twice as
limits along separate tracts {x > 0}, unlessp(—s) = ¢(s).

This last possibility will occur itp(s) is a polynomial ins? andg is odd. We
will show that repetition of asymptotic values still occurs, though in a slightly
strange way. Letl be the highest power of 2 which is a factorgfand the
powers ofs appearing in the expansion ¢f Thenx = 79, y = y(s?) + tsf,
wherer(u) is a real polynomial iu andod = g. Now suppose that

o'=1 and y=a"; (1.57)
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then
x= (@)% y=y(@)")+ (yt)(ws)’ (1.58)
and so
A(ws, yt) = A(s, t). (1.59)
In particular, sincel is even angs is odd, this holds whew = -1,y = —1;
i.e.
A(—s, —t) = A(s, t), (1.60)

and in particularA(0, —t) = A(O, t). It follows that our polynomial curve is
an even function and so has the fo0, t) = B(t?). The curve traced out is
thus B(t) from +o0o to O, followed by the reverse curvg(t) from 0 to +oc;

i.e. we obtain half ofB(t) traversed twice. We show that in a separate tract
the other half oB(t) with t < 0 is similarly traversed. Firstly, note that either
(i) o = g/dis odd, or (ii)o is even. In case (i) we consider the tract given by

Xx=-5"9=@as)?, y=uy(—sY)+ts’ =y ((hs)Y) +nt(rs)’, (1.61)
wheread = —1 andy = 2". Thus
R(x, y) = A(rs, nt) — A(0, nt) ass — 0. (1.62)

Now A(0,t) = A(0, yt) and so the non-vanishing terms in the expansion of
A(0, 1) involve only those powers* for which yk=1; i.e. o*=1. If o =
e?"1/d  this implies that dividesgk and so, asl is a power of 2 ang is odd,

d dividesk. ThusA(0, t) has the form

A0, t) = F(t9), (1.63)

whereF (t) is areal polynomial. Thus(0, nt) = F(%9) = F(—t9). Thuswith

s— 0 through positive valueg,— 0 through negative values; i.e. our tract lies

in the negative half-plane and has limiting values the half-curve described by
F(t) witht < 0, as asserted. In case (ii) we consider the tract

x=9=09)%  y=1y(=sY)+tsf =y ((hs)?) +nt(rs)f, (1.64)

and note that exactly the same reasoning applies, but our tract will now lie in
the positive half-plane. However, in this case the polynomigd) contains at
least one odd power agfand so we obtain a distinct tract.

134

As we have seen, apart from the above case, the asymptotic valueAf0reg
appears twice corresponding to the distinct tract obtained by changing the
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variables to —s. The parameteg determines whether the curve is repeated
or reversed as the tract is traversed in the positive direction: the positive direc-
tion corresponds ty increasing. Ifg is odd,s — —s gives the tract

x = (—9s)9, y = ¢(—s) —ts? (1.65)

and fors > 0, y is clearly a decreasing function of Therefore, as the tract
is traversed positively, we obtain the limiting cur®0, —t); i.e. the curve is
reversed. On the other hand, wheis evens — —s givesy = ¢(—s) + ts?

is an increasing function df and so the limiting curve i&(0, t); i.e. the curve
is repeated in the same direction.

1.3.5 Inverting the transformation
The mapping = s, y = ¢(s) + ts? has the inverse

s=xY9,  t=xPA>y—p(x¥9) (1.66)
and so
R(x, y) = A9, xP/9(y — ¢(x*/))). (1.67)
This gives
P(x, y) = A9, xP/(y/x — ¢p(x ), (1.68)
and so

P(xd,y) = A~ —xPp(x ) + yx’~9) = ALy (x) + yx?),  (1.69)

whereax =8 — q and, sincep has degregs — h, whereh > 1, ¥(x) =
—xP¢(1/x) is a polynomial of the formy(x) = cx" + ---, wherec # 0.
This may be regarded as the inverse of the formula

A(s, t) = P(s79, ¢(s)s79 +ts%). (1.70)
From these relations we see that on the cyrve x4¢(x 1) we have
P(x,y) = Ax"%, 0), (1.71)

and, ifg > B — h, y remains bounded on this curvexas> 0. ThusA(x %, 0)
remains bounded as — 0; i.e. A(x, 0) is a bounded polynomial as— cc.
This implies A(x, 0) is constant, and s®(xY, y) is constant on the curve.
Therefore, unless the polynomiB(x, y) is constant on some curve,

qg<pB—-h<Bg, (1.72)
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and in particular
B>q+2 and o> h. (2.73)

To reiterate: knowing the tract equatign= ¢(s)s 9 + ts*, we obtain the
polynomial A(s, t) from P(x, y); conversely, using the reverse tract equation

t = —sP¢(1/s) + ys*, we can recoveP(x9, y) from A(s, t). However, if we
work directly with A(s, t), applying our process, but not assuming any prior
knowledge of the asymptotic tracts, we will not necessarily obtain the above
tract fort. The reason for this is that need not be greater than the largest
power ofs in the expressios?¢(1/s). No terms” with y > « is needed in
determining the asymptotic tract appropriate £gs, t) in the above direction;

we will obtain a tract by deleting all terms ialwing those powers” with

y > «. On the other hand we can obtain precisely invertible transformations
if ¢ has the formp(x) = ¢x" + ---, wherec, # 0 andr > q; for then

o > deg6l¢(1/s)). Then the asymptotic tract is such that> 0 asx — oo.

In this case, if the process is actually carried through, at each stage the value
of pis always an integer and furthermore the zero is always unique and is a
multiple zero of exact degrel; this is because the initial largest power of

t is tN, but also the final leading term B(0, y), which has exact degred

(by our initial assumption). Therefothe leading term has exact degideat

each stage. This phenomenon indicates that the possible polynohigly
which can be obtained by applying the process to a polynoék of a rather
special type A(s, t) has the asymptotic value cur®{0, y) along a curve with

s— oo, t — 0; but all other asymptotic values &, if any, will occur along
curves wheras — 0,t — oo.

1.3.6 The comparison principle

We have omitted from our discussion of asymptotic values an important general
principle, which establishes the algebraic nature of the asymptotic tracts and
also the fact thafior real analytic polynomials, the only finite limiting values
at oo are asymptotic valueg he argument is easily sketched as follows.
Suppose we have a finite sum of terms, for which along a sequence the sum
tends to a finite value, though some individual terms tensbtdNVe compare
two terms by considering for a suitable global subsequence the ratio of the
absolute values of the two terms. If the limit of the ratio is finite and non-zero,
we say the terms are comparable. If the limit is zero, then the upper term of the
ratio is smaller than the lower term; awigde versaln this way we can order the
groups of comparable terms and pick out the largest grouping in this ordering. It
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is clear that the largest group must contain at least two terms, for if it contained
only one, then this term would dominate the sum, and so the sum would tend
to co. For polynomial terms the comparison of two such terms gives a tract of
the type described above in which the sequence must lie.

1.3.7 Solving algebraic equations and algebraic functions
An algebraic functionf (x) is a function satisfying an equation tbfe form

P(x, f(x)) =0, (1.74)

where P(X, y) is a real analytic polynomial. In other words= f(x) is a
solution of the equatiorP(x, y) = 0. Of course, at a giver the equation
may have no solutions or several solutions, though no more than the degree
of P. We are interested in continuous solutions for an interval of values of
We can use our procedure to construct an explicit form for a solution. After
a normalisation we may assume th(0, 0) = 0, and our aim is to construct
a solution f (x) with f(0) = 0. Let us attempt to find a solution for small
X > 0; if such a solution exists then for an arbitrary natural nun¥ethe
function Ry(x, y) = P(x,y)/xN has 0 as an asymptotic value as— O;
namely along the curve = f(x). Of course, our procedure is designed to find
all limiting values of Ry asx — 0; we obtain a finite number of algebraic
curvesy = ¢x(x) + txP, which are polynomials in a fractional power »f
each of which reduceRy (X, y) to a polynomial in a fractional power of
andt; we then putx = 0 giving a polynomial int, whose values fot real
are the limiting values; we are concerned with the valuegsvalich yield the
limiting value O, i.e. the zeros of the final polynomial, which is simply taking
the procedure to the next stage. Thus O will be a limiting valu®gfalong

a finite number of curveg = vy n(X). It is possible that for one, or more, of
the v n we haveRy (X, ¥k n(X)) = 0; thenyy n(X) is a required solution and
furthermore we have an explicit formula in powers«dbr the solution. On the
other hand any actual continuous solutipe= f (x) must satisfy for somk

f(X) = ¢(x) + t(x)x", (1.75)

wheret(X) tends to a zero of the final polynomial:as~ 0; in other words one

of they N is an approximation td . Sincey n is a partial sum offy n4r, We

see that we obtain a series expansionffany lettingN — co. At each stage the
degree of the leading term does not increase, so eventually becomes a constant
v. Thus for largeN the values ofp will be integers and each leading term will
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be a puresth power of a linear polynomial giving just one multiple zero. This
implies that the series expansion fois a power series ir*/9 for some natural
numberg. Our procedure continued indefinitely by increashgvill yield all

the solutionsy = f (x) for x > 0 near O (i.e. all thédranchesof the algebraic
function) and each such solution is a convergent power series, and therefore an
analytic function, in a fractional power af





