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1
The algebra of polynomials

1.1 Complex polynomials

1.1.1 Definitions

A complex polynomial is a function of the form

P(z) =
n∑

k=0

akz
k, (1.1)

where theak are complex numbers not all zero and wherez is a complex
variable. We also use the termsanalytic polynomial (reflecting the fact that
the polynomial is an analytic function) andalgebraic polynomial (since the
polynomial contains only algebraic operations on the variablez). If an �= 0 the
polynomial is said to havedegreen. In particular, a polynomial of degree 0
is, by definition, a non-zero constant. The function which is identically zero is
often regarded as being a polynomial of degree−∞. When theak are all real
numbers, the polynomialP(z) is called areal polynomial. Observe thatP(z)
is a real polynomial iff

P(z) = P(z) (1.2)

for all z ∈ C. From this it follows that, ifP(a) = 0 thenP(a) = 0; therefore
eithera is real orP has theconjugate pair of zerosa anda.

1.1.2 Number of zeros

Lemma A complex polynomial of degree n hasat mostn zeros.

The proof of this is an entirely elementary fact from algebra; this is to be
contrasted with the strongerfundamental theorem of algebra(see chapter 2)
which states that a polynomial of degreen ≥ 0 has exactlyn zeros; the usual

1



2 1 The algebra of polynomials

proofs of this use methods of analysis or topology (it is not a result which
follows purely from the algebraic field property of the complex numbers). The
proof of the weaker statement is by induction. The result is trivial whenn = 0.
Assume the statement proved for polynomials of degreen−1, wheren ≥ 1, and
let P be a polynomial of degreen given say by (1.1). EitherP has no zeros and
there is nothing further to prove, or∃a ∈ C such thatP(a) = 0. We then have

P(z)

z− a
= P(z) − P(a)

z− a
=

n∑
k=0

ak
zk − ak

z− a
=

n∑
k=1

ak
k−1∑
j=0

zk−1− j a j , (1.3)

and the last expression is clearlya polynomial of degreen − 1. Therefore by
the induction hypothesisP(z)/(z− a) has at mostn− 1 zeros and soP(z) has
at mostn zeros. The result follows by induction.

This result has a number of important consequences.

1.1.3

Uniqueness theoremIf P(z)and Q(z)arepolynomialsof degreenotexceeding
n and if the equation

P(z) = Q(z) (1.4)

is satisfied at n+ 1 distinct points, then P= Q.

For otherwise,P− Q is a polynomial of degree not exceedingn with n + 1
zeros. We deduce the next result.

1.1.4

Theorem: Lagrange’s interpolation formula Let z1, z2, . . . , zn+1 be n+ 1
distinct points and letw1, w2, . . . , wn+1 be arbitrary complex numbers (not
necessarily distinct but not all zero). Among all polynomials of degree not
exceeding n there is a unique polynomial P(z) such that

P(zk) = wk (1 ≤ k ≤ n + 1). (1.5)

This has the representation

P(z) =
n+1∑
k=1

wk
Q(z)

Q′(zk)(z− zk)
, (1.6)

where Q(z) = ∏n+1
k=1(z− zk).
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By the previous result there is at most one such polynomial; on the other hand
the polynomial so represented is immediately seen to have the desired property.

1.1.5

An alternative formulation of Lagrange’s formula is the following.

Corollary Let z1, z2, . . . , zn+1 ben+1distinct points and let Q(z) = ∏n+1
k=1(z−

zk). If P(z) is a polynomial of degree not exceeding n, then

P(z) =
n+1∑
k=1

P(zk)
Q(z)

Q′(zk)(z− zk)
. (1.7)

In other words we have an explicit method for determining the values of a
polynomial of degreen in terms of its values atn + 1 known points.

1.1.6

Example LetQ(z) = zn+1−1 = ∏n
k=0(z−ωk), whereωk = e2π ik/(n+1) are the

(n+ 1)th roots of unity. Then, ifP(z) is a polynomial of degree not exceeding
n, we have

P(z) = 1

n + 1

n∑
k=0

P(ωk)en(ωkz), (1.8)

whereen(z) = 1+ z+ · · · + zn.

1.1.7 Representation for harmonic polynomials

A harmonic polynomial T(z) is a function of the formT(z) = Q(z) + P(z),
whereQ andP are analytic polynomials, and so is a complex-valued harmonic
function inC (the complex plane).T can be represented in the form

T(z) =
n∑

k=−n

akr
|k|eikθ (z = rei θ ). (1.9)

T hasdegreen if eitheran ora−n is non-zero. Note that a harmonic polynomial
is the sum of a polynomial in the variablez and a polynomial in the variable
z. The polynomial is uniquely determined by the 2n+ 1 coefficientsak. These
coefficients also determine uniquely thetrigonometric polynomial

T(ei θ ) =
n∑

k=−n

ake
ikθ . (1.10)
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Indeed, given this latter expression the coefficients can be recovered from the
formula

ak = 1

2π

∫ 2π

0
e−ikθT(ei θ )dθ (−n ≤ k ≤ n). (1.11)

We can apply Lagrange’s interpolation formula to obtain a representation for a
harmonic polynomial as follows. Letζk = e2π ik/(2n+1) (0 ≤ k ≤ 2n) and set

Dn(z) = zn + · · · + z+ 1+ z+ · · · + zn. (1.12)

Then,if T (z) is a harmonic polynomial of degree not exceeding n, we have

T(z) = 1

2n + 1

2n∑
k=0

T(ζk)Dn(ζ kz). (1.13)

This follows easily by applying example 1.1.6 toeinθT(ei θ ), which is a poly-
nomial of degree at most 2n in the variableei θ . We obtain the above formula
on the unit circle. Since both sidesof the equation are harmonic polynomials,
it follows that the equality holds for allz ∈ C.

1.2 The number of zeros of a real analytic polynomial

1.2.1

Definition A real analytic polynomial is an expression of the form

P(x, y) =
m∑
j=0

n∑
k=0

aj,kx
jyk (1.14)

where the coefficientsaj,k are real or complex numbers and wherex andy are
real variables. Thedegreeof the termaj,kx j yk is j + k provided thataj,k �= 0,
and thedegreeof P is the largest of the degrees of the individual terms. Every
algebraic polynomial and every harmonic polynomial is real analytic and their
degrees earlier defined agree with the above definition.

1.2.2

Bézout’s theoremLet P(x, y) = u(x, y) + i v(x, y) (with u andv real) be
a complex-valued real analytic polynomial, where u has degree m andv has
degree n, and suppose that u andv are relatively prime (i.e. contain no non-
trivial common factors). Then P has at most mn zeros inC.

Proof This is an algebraic result which is proved using linear techniques.
Firstly, we may note thatP(0, y) is not identically zero, for otherwisex is
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a common factor ofu andv. We then writeu andv in the form

u(x, y) =
m∑

k=0

uk(x)y
k, v(x, y) =

n∑
k=0

vk(x)y
k, (1.15)

whereuk are real polynomials inx of degree at mostm−k andvk are real
polynomials inx of degree at mostn−k. Also, after an affine transformation of
the variables, wemay assume thatum andvn �= 0. (Affine transformations are
first degree real analytic polynomial mappings, which are bijective mappings
of C; for an account of these see chapter 2, section 2.7.21.) Now the equation
P=0 holds iffu=0 andv =0 simultaneously. Let us assume this is the case
at a particular pair (x, y). We use themethod of Sylvesterto eliminate the
quantityy from the two equationsu(x, y) = 0, v(x, y) = 0. The method is to
observe that the followingm+ n equations hold:

yµu(x, y) = 0 (0≤ µ ≤ n − 1); yνv(x, y) = 0 (0≤ ν ≤ m− 1).

(1.16)

Here y0 = 1 by definition. Each of these equations can be interpreted as the
vanishing of a linear combination of them+n quantities 1, y, y2, . . . , ym+n−1.
This implies the vanishing of the determinant of coefficients:

D(x) =

∣∣∣∣∣∣∣∣
u0(x) u1(x) u2(x) 0
0 u0(x) u1(x) u2(x)

v0(x) v1(x) v2(x) 0
0 v0(x) v1(x) v2(x)

∣∣∣∣∣∣∣∣
= 0. (1.17)

This example is the casem = n = 2. The determinantD(x) is a polynomial
in x. We will show that (a)D(x) does not vanish identicallyand (b)D(x) has
degree at most mn. When these facts are established, it will follow that there
are at mostmn values ofx for which the determinant can vanish. For each
suchx there are only finitely many values ofy such thatP(x, y) = 0. Thus we
obtain at most finitely many points (x, y) for which P(x, y) = 0. Because of
this we may now perform an affine transformation on (x, y) so that, after the
transformation to new variablesx′, y′, the resulting polynomial has for each
fixed x′ at most one zero iny′. (This is easily seen geometrically; e.g. a small
rotation will do.) It follows immediately from the above applied to the new
coordinates thatP has at mostmnzeros altogether, proving the theorem.
To prove (b) we letwi, j denote the terms of the (m+ n) × (m+ n) matrix

of coefficients and observe that each term is a polynomial inx whose degree
satisfies

degree ofwi, j ≤
{
m− j + i (1 ≤ i ≤ n),
− j + i (n + 1 ≤ i ≤ m+ n).

(1.18)
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Here we have taken the degree of the identically zero polynomial to be−∞.
Now the value of the determinant is given by the formula

|wi, j | =
∑

(−1)σ
m+n∏
i=1

wi,φ(i ) (1.19)

where thesumrangesoverall permutationsφ(i ) of thenumbers1,2, . . . ,m+n,
and whereσ = 0 for even permutations andσ =1 for odd permutations. It
follows that the degree of the determinant cannot exceed

n∑
i=1

(m−φ(i )+ i )+
m+n∑
i=n+1

(−φ(i ) + i )=mn+
m+n∑
i=1

(−φ(i ) + i )=mn,

(1.20)

since
∑

φ(i ) = ∑
i , asφ(i ) runs through the numbersi in some order. This

proves (b).
To prove (a) we assume that the determinant vanishes identically and show

that this implies thatu andv have a common factor, contradicting the hypothe-
ses. Firstly, we observe that the vanishing of the determinant is equivalent to
the vanishing of the determinant of the transpose matrix. Secondly, we observe
that the elements of the matrix are polynomials inx and therefore belong to the
field of rational functions inx. Because the determinant vanishes for allx, we
may interpret this as the statement that the determinant of this matrix consisting
of elements of this field vanishes, as all the operations required to evaluate the
determinant are algebraically defined over any field. Therefore from the alge-
braic theory of determinants we can assert the existence of elementsαk, βk of
the field not all zero and satisfying the set of equations

u0α0 + v0β0 =0, u1α0 + u0α1 + v1β0 + v0β1 =0, . . .etc.

(1.21)

or generally

r∑
k=r−m

ur−kαk +
r∑

k=r−n

vr−kβk = 0 (0≤ r ≤ m+ n − 1), (1.22)

whereαk = 0 for k ≥ n andβk = 0 for k ≥ m. We now set

A(y) =
n−1∑
k=0

αky
k, B(y) = −

m−1∑
k=0

βky
k (1.23)

and note that by multiplying out and equating coefficients to zero the above set
of equations is equivalent to the single equation

uA− vB = 0. (1.24)
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Since not bothA andB are zero, it follows from this equation that neitherA
norB is the zero element, as otherwise one ofu andv is zero, contradicting the
hypothesis.Now thecoefficients ofAandBare rational functions inx; therefore
multiplying through by a suitable polynomial inx, we obtain an equation of the
same form withA andB polynomials in bothx andy. Furthermore, we may
divide out the equation by any common factor ofA andB. Thus we obtain an
equation of the above form withA andB relatively prime polynomials, where
the degree ofA in y is smaller than the degree ofv in y and the degree ofB
in y is smaller than the degree ofu in y. We will show that f = v/A = u/B
is a polynomial inx andy, which is then the required common factor ofu and
v. Consider first the case whenB is constant in the variabley, and so a pure
polynomial inx. B can be factorised as a product of irreducible polynomials;
hence it is enough to show that each irreducible factorR of B is a factor ofu.
Expandingu in powers ofy, this is true iff every coefficient ofu is divisible by
R. Write u = u1 + u2, whereu1 consists of those terms in the expansion ofu
whose coefficients are divisible byR, andu2 consists of the remaining terms.
Similarly, write A = A1 + A2. SinceR is not a factor ofA, A2 �= 0. Thus we
havevB = Au = A1u1 + A1u2 + A2u1 + A2u2, from which we see thatA2u2
is divisible byR. This implies thatu2 = 0, as otherwise the lowest coefficient
of this product iny is divisible byR, but also is the product of a coefficient of
A2 and a coefficient ofu2, which is not divisible byR. ThusB dividesu in this
case.
Returning to the general case, from the usual division algorithm for polyno-

mials we can write

v

A
= f + ρ

A
,

u

B
= g+ σ

B
(1.25)

where f, g, ρ andσ are polynomials iny with rational coefficients inx, and
whereρ has y-degree smaller thanA and σ has y-degree smaller thanB.
Hence asy → ∞, ρ/A andσ/B → 0 and sof − g → 0. This clearly implies
that f = g. We therefore obtainρ/A = σ/B and so either (i)ρ = σ= 0 or
(ii) A/ρ = B/σ . In case (ii) we see that we are back to the same problem forA
andB that we had foru andv, butA andB have smaller degrees. Therefore we
may use an induction argument to deduce thatA andB have a common factor,
contradicting our legitimate assumption. It follows that case (i) holds and sof
is a common factor ofu andv. The coefficients off are rational functions inx,
but by multiplying through by the smallest polynomialp in x to cancel out the
denominators of the coefficients, we find as above thatp divides bothA and
B. SinceA andB are relatively prime,f is a polynomial in bothx andy. This
proves (a) and so completes the proof of B´ezout’s theorem.
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1.2.3

Bézout’s theorem can be used to put a bound on the number of zeros of a
real analytic polynomial even in the absence of algebraic information on the
polynomial. For example it may often be the case that on analytic or topological
grounds one can establish the finiteness of the number of zeros. In this case we
have the following result.

Theorem Let P(x, y) = u(x, y)+ i v(x, y) be a complex-valued real analytic
polynomial,where u has degree m≥ 0 andv has degree n≥ 0. Then P has at
most mn isolated zeros inC. In particular, if P has at most finitely many zeros,
then P has at most mn zeros inC.

Proof The following argument is an adaptation of a method given by
Wilmshurst [72]. Ifm = 0, thenu is a non-zero constant and soP has no
zeros; similarly ifn = 0. If m = 1, then either (i)u dividesv or (ii) u andv

are relatively prime. In case (ii) B´ezout’s theorem shows thatP has at mostn
zeros; in case (i)P vanishes exactly whenu vanishes, which is on a line. Hence
P has no isolated zeros. Thus the theorem follows in this case. We proceed by
induction and assume the theorem is true for polynomialsU + iV , whereU has
degree smaller thanmandV has degree smaller thann. If u andv are relatively
prime, then B´ezout’s theorem gives the result. Therefore we may assume that
u andv have highest common factorp say, wherep is a real polynomial in
(x, y) of degreer ≥ 1. Thenu/p andv/p are relatively prime polynomials of
degreesm− r andn − r respectively, and soP/p has at most (m− r )(n − r )
zeros. The remaining zeros ofP are the zeros ofp. Now p is a real-valued
continuously differentiable function in the plane. It follows from the implicit
function theorem (see chapter 2) that at a zeroc of p either (i) p vanishes on
a curve passing throughc or (ii) both partial derivativespx and py are zero
at c. In case (i)c is a non-isolated zero ofP. Thus if c is an isolated zero of
P, which is also a zero ofp, thenc is an isolated zero ofp, and so from case
(ii) the polynomialQ = p+ i px has an isolated zero atc. Sincep has degreer
andpx has degreer−1, it follows by the induction hypothesis thatQhas atmost
r (r − 1) isolated zeros. HenceP has at most (m− r )(n− r ) + r (r − 1) < mn
isolated zeros. The result follows by induction.

1.2.4 A complex approach

It is clear that Bézout’s theorem will be equally valid for a pair of complex
polynomialsu(z, ζ ), v(z, ζ ) of complex variablesz andζ. From the two equa-
tionsu(z, ζ ) = 0 andv(z, ζ ) = 0 we can use Sylvester’s method to eliminate
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the variableζ , obtaining a determinantD(z), which is an algebraic polynomial
in zwhose zeros contain thosez for which there exists a pair (z, ζ ) satisfying
the two equations. The maximum degree ofD is the product of the degrees of
u andv. We can apply this result to our original problem of finding the zeros
of a complex-valued real analytic polynomialP. P is a polynomial in the real
variablesx andy; by making the substitutionsx = 1

2(z+ z), y = 1
2i (z− z), P

becomes a polynomialP(z, z) in the ‘variables’z andz; in other words a real
analytic polynomial can be written in the form of a finite sum

P(z, z) =
∑
j,k

aj,kz
j zk, (1.26)

where theaj,k are complex numbers and the degree ofP is the maximum of
j + k over terms whereaj,k �= 0. This is clearly the restriction ofP(z, ζ ) =∑

j,k aj,kζ
j zk toζ = z. To apply theSylvestermethodof eliminationwe require

two equations. However,P(z, z) = 0 iff P(z, z) = 0; thus we eliminateζ from
the two equations

P(z, ζ ) = 0, P(ζ , z) = 0 (1.27)

which take the form

∑
j,k

aj,kζ
j zk = 0,

∑
j,k

aj,kz
j ζ k = 0. (1.28)

We obtain the determinant equationD(z) = 0, whereD is an algebraic poly-
nomial inz whose degree does not exceedn2, wheren is the degree ofP. D
is identically zero iff the above pair of polynomials inz andζ have a common
factor. We leave it as an exercise to show that this holds iff, writingP = u+ i v
(u, v real),u andv have a common factor. Thus in this formulation we have lost
the distinction between the possible different degrees ofu andv, asn is clearly
the larger of these two degrees. On the other hand we have constructed an alge-
braic polynomialD(z) whose set of zeros contains all the zeros of the original
real analytic polynomialP. In fact, if (z, ζ ) is any pair satisfying the above two
equations, thenD(z) = 0. In general it need not be the case that theζ satisfies
ζ = z, and thereforeD is likely to have more zeros thanP. However, there are
certainly cases whereD andP have the same zeros. Indeed this is the case if
P is itself an algebraic polynomial: thenD = cPn, wherec is a constant�= 0.
Of course, if we count multiplicities, thenD hasn2 zeros, whereasP has only
n zeros. We will give an example in chapter 2 (subsection 2.6.11) whereD has
n2 simple zeros all of which are zeros ofP.
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It is worth recording here the form of the 2n × 2nmatrix of whichD is the
determinant. We have

P(z, z) =
∑
j,k

aj,kz
j zk =

∑
j

( ∑
k

aj,kz
k

)
zj =

∑
k

(∑
j

aj,kz
j

)
zk (1.29)

and so

P(z, z) =
n∑
j=0

bj (z)z
j , P(z, z) =

n∑
j=0

cj (z)z
j , (1.30)

where

bj (z) =
n− j∑
k=0

aj,kz
k, cj (z) =

n− j∑
k=0

ak, j z
k. (1.31)

The terms of the matrix are given by

wi, j = bj−i for i ≤ j ≤ n + i and 1≤ i ≤ n,

wi, j = cj−i+n for i − n ≤ j ≤ i and n + 1 ≤ i ≤ 2n,

wi, j = 0 otherwise. (1.32)

As recorded earlier these relations imply that the maximum degree ofwi, j is
given by

degree ofwi, j ≤
{
n − j + i (i ≤ j ≤ n + i and 1≤ i ≤ n),
− j + i (i − n ≤ j ≤ i andn + 1 ≤ i ≤ 2n).

(1.33)

Otherwise degree ofwi, j = −∞ (so trivially satisfies the above inequalities).
We then have

D(z) =
∑

(−1)σ
2n∏
i=1

wi,φ(i ) (1.34)

where the sum ranges over all permutationsφ(i ) of the numbers 1,2, . . . ,2n,
and whereσ = 0 for even permutations andσ = 1 for odd permutations.
Each product

∏2n
i=1 wi,φ(i ) has degree not exceeding

∑n
i=1(n − φ(i ) + i ) +∑2n

i=n+1(−φ(i )+ i ) = n2, with equality only if every termwi,φ(i ) in the product
attains its maximum degreen− φ(i )+ i for 1≤ i ≤n or−φ(i )+ i for n+ 1≤
i ≤ 2n.

As an application of these remarks, suppose thatP has coefficientsaj,k where
aj,n− j = 0 for 1≤ j ≤ n anda0,n �= 0; in other words the only term of highest
degreen in the expansion ofP is the term inzn. Thenb0(z) has full degreen,
andc0(z) has degree 0, but the remaining polynomialsbj (z) (1 ≤ j ≤ n) and
cj (z) (0 ≤ j ≤ n−1) have degree strictly smaller thann− j . It follows that the
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onlypermutationgivingaproductof degreen2 is thecaseφ(i ) = i (1 ≤ i ≤ 2n).
ThusD(z) has exact degreen2, and thereforeP has at mostn2 zeros.
Collecting up the results of this subsection we have the next theorem.

1.2.5

Theorem Let P(z, z) = u+i v (u andv real) be a complex-valued real analytic

polynomial of degree n. Then theSylvester resultant D(z)of P(z, ζ )andP(ζ , z)
is a polynomial in z of degree at most n2. Every zero of P(z, z) is a zero of D(z);

indeed, if P(z, ζ ) = P(ζ , z) = 0, then D(z) = 0. D(z) vanishes identically if,
and only if, u andv have a non-trivial common factor. Finally, if

P(z, z) = Q(z, z) + Azn, (1.35)

where Q is a real analytic polynomial of degree< n and A is a non-zero
constant, then D(z) has exact degree n2 and therefore P has at most n2 zeros.
Indeed, in this case, P attains every valuew at most n2 times and is therefore
an n2-valent mapping of the plane.

The final remark comes from applying the theorem toP − w. We shall see in
chapter 2 thatP of this form does actually attain every valuew, and so is a
surjective mapping of the plane.

1.2.6 The Sylvester resultant of P− w

In studying the valence of a mappingP(z, z) it is natural to consider the
Sylvester resultant forP − w, wherew is an arbitrary complex number. The
resultant will take the formD(z, w, w), where this is an algebraic polynomial
in z and a real analyticpolynomial inw. Furthermore, ifP has degreen, then
as a real analytic polynomial inw, D has at most degreen. This follows from
the fact that the only terms involvingw in the matrix are the termsb0 − w and
c0 − w, sow only appears with degree 1 inwi, j if j = i for 1 ≤ i ≤ n and if
j = i − n for n+ 1 ≤ i ≤ 2n. All other terms have degree 0 or−∞ in w. For
any permutationφ of the numbers 1,2, . . . ,2n, there are atmostn valuesi such
that (i)φ(i ) = i where 1≤ i ≤ n and (ii)φ(i ) = i − n wheren+ 1 ≤ i ≤ 2n.

1.2.7 Evaluating the Sylvester resultant

Let b0,b1, . . . ,bn andc0, c1, . . . , cn be the generating elements of the 2n× 2n
Sylvester matrix. Then the resultant can be written in the form

∑
φ

(−1)σ
n∏

i=1

bφ(i )−i cφ(i+n)−i (1.36)
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summed over all permutationsφ of the numbers 1,2, . . . ,2n such that for
1 ≤ i ≤ n

0 ≤ φ(i ) − i ≤ n, 0 ≤ φ(i + n) − i ≤ n. (1.37)

Note that, for each permutationφ, the sum of the subscripts of thebs and the
cs is exactlyn2.

1.2.8 Further properties of the resultant

Letu andv be real analytic polynomials of degreesmandn respectively written
in the form

u(x, y) =
m∑

k=0

uk(x)y
k, v(x, y) =

n∑
k=0

vk(x)y
k, (1.38)

whereum �= 0 andvn �= 0. If the resultant is not identically zero, then the set
of equations

r∑
k=r−m

ur−kαk +
r∑

k=r−n

vr−kβk = λr (0 ≤ r ≤ m+ n − 1) (1.39)

can be uniquely solved forαk andβk, whereαk = 0 for k ≥ n andβk = 0 for
k ≥ m. Here theλr are given arbitrary elements in the field of rational functions
in x, and the solutionsαk andβk are then also elements in this field. Writing

�(x, y)=
m+n−1∑
r=0

λr (x)y
r , A(x, y)=

n−1∑
k=0

αk(x)y
k, B(x, y)=

m−1∑
k=0

βk(x)y
k,

(1.40)

the above equations are equivalent to the single equation

uA+ vB = �. (1.41)

In other words,if the resultant of u andv does not vanish identically, then given
� of degree in y at most m+ n − 1we can find a unique A of degree at most
n− 1 in y and a unique B of degree at most m− 1 in y to satisfy this equation.
In particular, taking� = 1,we can find a unique p of degree at most n− 1

and a unique q of degree at most m− 1 such that

up+ vq = 1. (1.42)

Herepandq are polynomials inywith coefficients which are rational functions
in x. If R(x) is the lowest common denominator of these rational coefficients,
then we obtain the relation

uP+ vQ = R (1.43)
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whereP = pR,Q = qRare now polynomials in bothx andy. The polynomial
R(x) is a factor of the resultant: if we use the Sylvester matrix to solve the
equationup+ vq = 1 for p andq, then, applying Cramer’s rule, the solutions
for each of the coefficients ofp andq (expanded as polynomials iny) will be
the ratio of two determinants; the numerator is± the determinant of one of
the minors of the matrix corresponding to the first column; the denominator
is the determinant of the matrix, i.e. the Sylvester resultant. Sinceu andv have
polynomial coefficients, it follows that the Sylvester resultant is a common
denominatorof all the rational coefficientsofpandq.Hence the lowest common
denominatorR is a factor of the resultant; ifR is a proper factor, then there is
a factor of the resultant which is acommon factor of the determinants of each
of the minors corresponding to the first column.

1.3 Real analytic polynomials at infinity

1.3.1 Resolving the singularity:the blow-up method

Let P(x, y) be a real analytic polynomial of degreeN. The limiting behaviour
at infinity of P can be determined by performinga sequence of transformations,
which we now describe. Firstly, after a suitable affine transformation we may
assume that both the real and imaginary parts ofP(0, y) have full degreeN.
We then make the transformation

x �→1/x, y �→ y/x, (1.44)

obtaining

R(x, y) = P

(
1

x
,
y

x

)
= Q(x, y)

xN
, (1.45)

whereQ(x, y) is a polynomial of degreeN such thatQ(0, y) has degreeN.
Any finite limiting value ofP at infinity is then a limiting value ofRasx → 0
andy remains bounded. We expandQ in powers ofx, obtaining

R(x, y) =

N∑
k=0

Qk(y)x
k

xN
. (1.46)

It is clear thatR(x, y)→ ∞asx→0andy remains bounded, unlessy tends to a
real zero ofQ0(y); for otherwise the termQ0(y)/xN dominates the expression.
Thus to determine the possible finite limiting values ofR we will consider
x→0 through positive values andy→a, wherea is a real zero ofQ0. We
write

Qk(y) = (y − a)rk Sk(y) (0 ≤ k ≤ N), (1.47)
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whererk is the multiplicity of the zeroa of Qk (if Qk(a) �= 0, thenrk = 0); if
Qk ≡ 0, for the purposes of this discussion we may takerk = +∞. Next, let
us consider the substitution

y = a + t xp, (1.48)

wherep is a positive number to be determined. Note that themapping (x, y) �→
(x, t) is a 1–1 mapping of the half-planex > 0 onto itself. We obtain

R(x, y) = x−N

(
N∑

k=0

Sk(y)t
rk xprk+k

)
. (1.49)

Now observe that, for small positivep, pr0 < prk + k (1 ≤ k ≤ N) and the
dominating term isS0(a)tr0/xN−pr0. If pr0 = N andpr0 < prk + k (1≤ k≤ N),
then with the choicep= N/r0 we obtain the limiting valuesS0(a)tr0 (t real). If
r0 is odd, this is a simply described straight line through the origin; ifr0 is even,
it is a doubly described ray with endpoint at the origin. Otherwise, we choose
p > 0 to satisfypr0 = pr j + j for some j andpr0 ≤ prk + k (1 ≤ k ≤ N);
in other words

p = min
j

r0 − r j
, (1.50)

where the minimum is taken over thosej (1 ≤ j ≤ N − 1) for whichr0 > r j .
We obtain

R(x,a + t xp) = F(x, t)

xN−pr0
, (1.51)

whereF(x, t) is polynomial int of degree at mostN, and contains fractional
powers ofx – in fact is polynomial inx andxp. Note also thatF(0, t) is a
polynomial int of degreer0, which contains only those powerstr j for which
pr0 = pr j + j . Suppose now thatp = µ/ν, whereµ andν are relatively prime
natural numbers. Then with the substitutionx = sν we obtain

R(sν,a + tsµ) = A(s, t)

sνN−µr0
, (1.52)

whereA(s, t) is a polynomial ins andt andA(0, t) = F(0, t) has degreer0.
Furthermore, since the powerstr j occurring inA(0, t) satisfypr0 = pr j + j ,
we obtain

r0 − r j = ν j

µ
, (1.53)

and, sinceµ andν are relatively prime andr0 − r j is an integer,µ divides j
and sor0 − r j is an integral multiple ofν. It follows thatA(0, t) has the form

A(0, t) = tαB(tν), (1.54)

whereα is a non-negative integer andB(t) is a polynomial int of degree≥ 1.
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1.3.2

Now the form ofR after this transformation is of the same general type in the
variabless andt as it was in the variablesx andy, namely a polynomial ins
andt divided by a power ofs. Therefore it is open to us to repeat this reducing
process. Indeed, it follows from our comparison principle (see 1.3.6 below) that
any finite limiting value ofRwill be attained along some curvey = a + t xp,
with x → 0 andt remaining bounded, wherep is a positive and indeed rational
number. On the other handR → ∞ along such curves, ifp is smaller than the
above minimum choice. Therefore, finite limiting values can only be attained
for either this or larger values ofp. This implies that with our chosen minimum
value ofp and the above transformation, limiting values ofR (associated with
the zeroa) will be attained withs→0 andt remaining bounded (in factt → 0
if the limiting value corresponds to a larger value ofp). As before, each limiting
value will correspond to a real zero,b say, of the polynomialA(0, t). If the
multiplicity of the zerob is s0, then we make a transformationt = b + usq,
whereq is chosen according to the same minimum process with which we
chosep. Now clearlys0 ≤ r0 ≤ N; if s0 = r0, thenA(0, t) = c(t − b)r0, where
c is a non-zero constant, and thereforeA(0, t) contains all powers oft from
0 to r0. It follows that ν =1 and so the power ofs in the denominator is at
mostN − r0. We see, therefore, that, if we continue repeating the process, at
each step either the degree of the leading term strictly decreases or the power
of the denominator strictly decreases by an integer amount. Thus eventually
the process will terminate in the following way. Using the original notation
Q(x, y)/xN as a standard form, the final transformation will take the form
y = a + t xp, wherep = N/r0. As earlier described either this will lead to
a line or ray of asymptotic values or this choice ofp will coincide with the
minimum choicep = min( j/(r0− r j )). Following the transformation as before
we obtain a curve of asymptotic valuesA(0, t), a polynomial in the real variable
t of degreer0 ≥ 1. Indeed, as the denominator is eliminated at the final step,
the sequence of transformations will send our original polynomialP to a new
polynomialA(s, t). It is clear that for theexistenceof asymptotic values it is both
necessary andsufficient that thereexist suchafinite sequenceof transformations
from P to another polynomialA. If we perform our construction for every real
zero of our leading term at every stage, we will obtain all possible asymptotic
values withx > 0 tending to∞. We can obtain in this way a maximum of
N = degree ofP asymptotic value curves, which are polynomial images of
the real axis. Of course, if at one or other stage the leading termhas no real
zeros, then the polynomial tends to∞ along the resulting tract. In a similar
way, to obtain the asymptotic values ofP with x < 0 tending to−∞, we
simply apply the same reasoning to the function (−1)NQ(−x, y)/xN , again
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takingx > 0 and tending to 0. This gives anotherN possible asymptotic value
curves.

1.3.3 Repetition of asymptotic values

However, as we shall see, each asymptotic value ofP at∞ is repeated along
quite separate tracts, and in general each asymptotic value curve appears twice
(except in one circumstance), either repeated or reversed. This is a conse-
quence of the fact that, according to the above reasoning, the asymptotic values
are attained as limits along rational algebraic curves of a particularly simple
type. To be specific, if we put together the sequence of transformations from the
initial R(x, y) to the final polynomialA(s, t), we obtain a single transformation
of the form

x = sq, y = φ(s) + tsβ, (1.55)

whereq andβ are natural numbers and whereφ(s) is a real polynomial of
degree< β; furthermore, the highest common factor of the powers ofsappear-
ing in the expressionφ(s) + tsβ is 1. In short, we have

R(sq, φ(s) + tsβ) = A(s, t). (1.56)

If φ(s) = ∑m
k=0 cks

k, then the coefficientsck are zeros of successive leading
terms in our sequence of transformations. Note that themapping (s, t) �→ (x, y)
is a 1–1 mapping of the half-plane{s>0} onto the half-plane{x>0}. Indeed,
this is clearly the case at each stage of the resolution process, which consists
of blowing up a chosen zero into an entire line, the remainder of the line being
pushed off to∞. Furthermore, the mapping is 1–1 from{s<0} onto{x<0}, if
q is odd, and onto{x>0}, if q is even. The curveA(0, t) is a limiting curve of
asymptotic valuesass → 0 througheither positive valuesofsor negative values
of s. If q is odd, the approach through negative values ofs will correspond in
the (x, y)-plane to a tract in{x<0} diametrically opposite the constructedtract
in {x>0}, and therefore the asymptotic value curve is repeated in a completely
different portion of the plane. Ifq is even, the curve will again appear twice as
limits along separate tracts in{x>0}, unlessφ(−s) = φ(s).
This last possibility will occur ifφ(s) is a polynomial ins2 andβ is odd. We

will show that repetition of asymptotic values still occurs, though in a slightly
strange way. Letd be the highest power of 2 which is a factor ofq and the
powers ofs appearing in the expansion ofφ. Thenx = sσd, y = ψ(sd) + tsβ ,
whereψ(u) is a real polynomial inu andσd = q. Now suppose that

ωd = 1 and γ = ωβ ; (1.57)
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then

x = (ωs)σd, y = ψ((ωs)d) + (γ t)(ωs)β (1.58)

and so

A(ωs, γ t) = A(s, t). (1.59)

In particular, sinced is even andβ is odd, this holds whenω = −1, γ = −1;
i.e.

A(−s, −t) = A(s, t), (1.60)

and in particularA(0, −t) = A(0, t). It follows that our polynomial curve is
an even function and so has the formA(0, t) = B(t2). The curve traced out is
thusB(t) from +∞ to 0, followed by the reverse curveB(t) from 0 to+∞;
i.e. we obtain half ofB(t) traversed twice. We show that in a separate tract
the other half ofB(t) with t < 0 is similarly traversed. Firstly, note that either
(i) σ = q/d is odd, or (ii)σ is even. In case (i) we consider the tract given by

x = −sσd = (λs)σd, y = ψ(−sd)+ tsβ =ψ((λs)d)+ ηt(λs)β, (1.61)

whereλd = −1 andη = λ
β
. Thus

R(x, y) = A(λs, ηt) → A(0, ηt) ass → 0. (1.62)

Now A(0, t) = A(0, γ t) and so the non-vanishing terms in the expansion of
A(0, t) involve only those powerstk for which γ k =1; i.e. ωβk =1. If ω =
e2π i /d, this implies thatd dividesβk and so, asd is a power of 2 andβ is odd,
d dividesk. ThusA(0, t) has the form

A(0, t) = F(td), (1.63)

whereF(t) is a real polynomial. ThusA(0, ηt) = F(ηdtd) = F(−td). Thuswith
s→0 through positive values,x→0 through negative values; i.e. our tract lies
in the negative half-plane and has limiting values the half-curve described by
F(t) with t < 0, as asserted. In case (ii) we consider the tract

x = sσd = (λs)σd, y = ψ(−sd)+ tsβ = ψ((λs)d)+ ηt(λs)β, (1.64)

and note that exactly the same reasoning applies, but our tract will now lie in
the positive half-plane. However, in this case the polynomialψ(s) contains at
least one odd power ofs and so we obtain a distinct tract.

1.3.4

As we have seen, apart from the above case, the asymptotic value curveA(0, t)
appears twice corresponding to the distinct tract obtained by changing the
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variables to −s. The parameterβ determines whether the curve is repeated
or reversed as the tract is traversed in the positive direction: the positive direc-
tion corresponds toy increasing. Ifβ is odd,s �→ −s gives the tract

x = (−s)q, y = φ(−s) − tsβ (1.65)

and fors> 0, y is clearly a decreasing function oft . Therefore, as the tract
is traversed positively, we obtain the limiting curveA(0, −t); i.e. the curve is
reversed. On the other hand, whenβ is even,s �→ −s givesy = φ(−s) + tsβ

is an increasing function oft , and so the limiting curve isA(0, t); i.e. the curve
is repeated in the same direction.

1.3.5 Inverting the transformation

The mappingx = sq, y = φ(s) + tsβ has the inverse

s = x1/q, t = x−β/q(y − φ(x1/q)) (1.66)

and so

R(x, y) = A(x1/q, x−β/q(y − φ(x1/q))). (1.67)

This gives

P(x, y) = A(x−1/q, xβ/q(y/x − φ(x−1/q))), (1.68)

and so

P(xq, y) = A(x−1, −xβφ(x−1) + yxβ−q) = A(x−1, ψ(x) + yxα), (1.69)

whereα = β − q and, sinceφ has degreeβ − h, whereh ≥ 1, ψ(x) =
−xβφ(1/x) is a polynomial of the formψ(x) = cxh + · · · , wherec �= 0.
This may be regarded as the inverse of the formula

A(s, t) = P(s−q, φ(s)s−q + tsα). (1.70)

From these relations we see that on the curvey = xqφ(x−1) we have

P(xq, y) = A(x−1,0), (1.71)

and, ifq ≥ β − h, y remains bounded on this curve asx → 0. ThusA(x−1,0)
remains bounded asx → 0; i.e. A(x,0) is a bounded polynomial asx→ ∞.
This implies A(x,0) is constant, and soP(xq, y) is constant on the curve.
Therefore, unless the polynomialP(x, y) is constant on some curve,

q < β − h < β, (1.72)
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and in particular

β ≥ q + 2 and α > h. (1.73)

To reiterate: knowing the tract equationy = φ(s)s−q + tsα, we obtain the
polynomialA(s, t) from P(x, y); conversely, using the reverse tract equation
t = −sβφ(1/s) + ysα, we can recoverP(xq, y) from A(s, t). However, if we
work directly with A(s, t), applying our process, but not assuming any prior
knowledge of the asymptotic tracts, we will not necessarily obtain the above
tract for t . The reason for this is thatα need not be greater than the largest
power ofs in the expressionsβφ(1/s). No termsγ with γ ≥ α is needed in
determining the asymptotic tract appropriate forA(s, t) in the above direction;
we will obtain a tract by deleting all terms involving those powerssγ with
γ ≥ α. On the other hand we can obtain precisely invertible transformations
if φ has the formφ(x) = cr xr + · · · , wherecr �= 0 andr > q; for then
α > deg(sβφ(1/s)). Then the asymptotic tract is such thaty → 0 asx → ∞.
In this case, if the process is actually carried through, at each stage the value
of p is always an integer and furthermore the zero is always unique and is a
multiple zero of exact degreeN; this is because the initial largest power of
t is t N , but also the final leading term isP(0, y), which has exact degreeN
(by our initial assumption). Thereforethe leading term has exact degreeN at
each stage. This phenomenon indicates that the possible polynomialsA(s, t)
which can be obtained by applying the process to a polynomialP are of a rather
special type.A(s, t) has the asymptotic value curveP(0, y) along a curve with
s→ ∞, t →0; but all other asymptotic values ofA, if any, will occur along
curves wheres → 0, t → ∞.

1.3.6 The comparison principle

Wehave omitted from our discussion of asymptotic values an important general
principle, which establishes the algebraic nature of the asymptotic tracts and
also the fact that,for real analytic polynomials, the only finite limiting values
at∞ are asymptotic values. The argument is easily sketched as follows.
Suppose we have a finite sum of terms, for which along a sequence the sum

tends to a finite value, though some individual terms tend to∞. We compare
two terms by considering for a suitable global subsequence the ratio of the
absolute values of the two terms. If the limit of the ratio is finite and non-zero,
we say the terms are comparable. If the limit is zero, then the upper term of the
ratio is smaller than the lower term; andvice versa. In this way we can order the
groups of comparable terms and pick out the largest grouping in this ordering. It
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is clear that the largest group must contain at least two terms, for if it contained
only one, then this term would dominate the sum, and so the sum would tend
to∞. For polynomial terms the comparison of two such terms gives a tract of
the type described above in which the sequence must lie.

1.3.7 Solving algebraic equations and algebraic functions

An algebraic functionf (x) is a function satisfying an equation ofthe form

P(x, f (x)) = 0, (1.74)

whereP(x, y) is a real analytic polynomial. In other wordsy = f (x) is a
solution of the equationP(x, y) = 0. Of course, at a givenx the equation
may have no solutions or several solutions, though no more than the degree
of P. We are interested in continuous solutions for an interval of values ofx.
We can use our procedure to construct an explicit form for a solution. After
a normalisation we may assume thatP(0,0) = 0, and our aim is to construct
a solution f (x) with f (0) = 0. Let us attempt to find a solution for small
x > 0; if such a solution exists then for an arbitrary natural numberN the
function RN(x, y) = P(x, y)/xN has 0 as an asymptotic value asx → 0;
namely along the curvey = f (x). Of course, our procedure is designed to find
all limiting values ofRN asx → 0; we obtain a finite number of algebraic
curvesy = φk(x) + t xβk , which are polynomials in a fractional power ofx,
each of which reducesRN(x, y) to a polynomial in a fractional power ofx
and t ; we then putx = 0 giving a polynomial int , whose values fort real
are the limiting values; we are concerned with the values oft which yield the
limiting value 0, i.e. the zeros of the final polynomial, which is simply taking
the procedure to the next stage. Thus 0 will be a limiting value ofRN along
a finite number of curvesy = ψk,N(x). It is possible that for one, or more, of
theψk,N we haveRN(x, ψk,N(x)) = 0; thenψk,N(x) is a required solution and
furthermore we have an explicit formula in powers ofx for the solution. On the
other hand any actual continuous solutiony = f (x) must satisfy for somek

f (x) = φk(x) + t(x)xβk , (1.75)

wheret(x) tends to a zero of the final polynomial asx → 0; in other words one
of theψk,N is an approximation tof . Sinceψk,N is a partial sum ofψk,N+r , we
see that we obtain a series expansion forf by lettingN→∞. At each stage the
degree of the leading term does not increase, so eventually becomes a constant
ν. Thus for largeN the values ofp will be integers and each leading term will
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be a pureνth power of a linear polynomial giving just one multiple zero. This
implies that the series expansion forf is a power series inx1/q for some natural
numberq. Our procedure continued indefinitely by increasingN will yield all
the solutionsy= f (x) for x>0 near 0 (i.e. all thebranchesof the algebraic
function) and each such solution is a convergent power series, and therefore an
analytic function, in a fractional power ofx.




