Index

<table>
<thead>
<tr>
<th>abc theorem 370</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abel 23</td>
</tr>
<tr>
<td>affine mappings/transformations 5, 73</td>
</tr>
<tr>
<td>Ålander, M. 343</td>
</tr>
<tr>
<td>algebraic function 20</td>
</tr>
<tr>
<td>algebraic polynomial 1</td>
</tr>
<tr>
<td>algebraic tract 103</td>
</tr>
<tr>
<td>analytic continuation lemma 204</td>
</tr>
<tr>
<td>analytic polynomial 1</td>
</tr>
<tr>
<td>angular separation of critical points and univalence 241, 243</td>
</tr>
<tr>
<td>angular separation of zeros</td>
</tr>
<tr>
<td>convolution theorem 254</td>
</tr>
<tr>
<td>Kaplan class condition 248</td>
</tr>
<tr>
<td>Suffridge condition 249</td>
</tr>
<tr>
<td>third condition 251</td>
</tr>
<tr>
<td>annihilation property 129</td>
</tr>
<tr>
<td>annular region for zeros 202</td>
</tr>
<tr>
<td>apolar polynomials 180</td>
</tr>
<tr>
<td>apolarity, weak 182</td>
</tr>
<tr>
<td>apolarity theorem 181</td>
</tr>
<tr>
<td>approximate identity 147</td>
</tr>
<tr>
<td>approximation theorem 258</td>
</tr>
<tr>
<td>argument 29</td>
</tr>
<tr>
<td>and tangent of curve 387–90</td>
</tr>
<tr>
<td>of polynomial with zeros on circle 243</td>
</tr>
<tr>
<td>argument principle 23, 27, 44, 84</td>
</tr>
<tr>
<td>for Jordan domain 45</td>
</tr>
<tr>
<td>for meromorphic functions 45</td>
</tr>
<tr>
<td>asymptotic values 15–29</td>
</tr>
<tr>
<td>of finitely valent mapping 90</td>
</tr>
<tr>
<td>of Pinchuk mapping 93–100</td>
</tr>
<tr>
<td>Bernstein’s inequality 152, 186</td>
</tr>
<tr>
<td>for trigonometric polynomials 155</td>
</tr>
<tr>
<td>Bézout’s theorem 4, 84</td>
</tr>
<tr>
<td>bisector theorem 200, 215, 216</td>
</tr>
<tr>
<td>Blaschke product 60, 193, 231, 233, 351, 373</td>
</tr>
<tr>
<td>and convex curve 382–7</td>
</tr>
<tr>
<td>and harmonic mappings 377–82</td>
</tr>
<tr>
<td>and Smale’s conjecture 365</td>
</tr>
<tr>
<td>and step functions on convex curves 394</td>
</tr>
<tr>
<td>Walsh theorem 377</td>
</tr>
<tr>
<td>blow-up method 13</td>
</tr>
<tr>
<td>Bôcher–Walsh theorem 192</td>
</tr>
<tr>
<td>Bojanov–Rahman–Szyman method 213, 226</td>
</tr>
<tr>
<td>Bojanov–Rahman–Szyman theorem 215</td>
</tr>
<tr>
<td>Bolzano–Weierstrass property 128</td>
</tr>
<tr>
<td>Borsuk–Ulam theorem 79</td>
</tr>
<tr>
<td>Borsuk–Ulam inequality 193</td>
</tr>
<tr>
<td>extensions 195–6</td>
</tr>
<tr>
<td>bound preserving g.c. operator 170</td>
</tr>
<tr>
<td>bound preserving operator 140</td>
</tr>
<tr>
<td>boundary inequality 224</td>
</tr>
<tr>
<td>boundary rotation of curve 389</td>
</tr>
<tr>
<td>bounded boundary rotation 298</td>
</tr>
<tr>
<td>and univalence 389</td>
</tr>
<tr>
<td>bounded convolution operators 142</td>
</tr>
<tr>
<td>integral representation 168</td>
</tr>
<tr>
<td>bounded operator 139</td>
</tr>
<tr>
<td>bounded operator condition 140</td>
</tr>
<tr>
<td>bounded variation 159, 221</td>
</tr>
<tr>
<td>branch of algebraic function 21</td>
</tr>
<tr>
<td>of inverse function 57</td>
</tr>
<tr>
<td>of logarithm 30</td>
</tr>
<tr>
<td>of square root 31</td>
</tr>
<tr>
<td>branch point 306</td>
</tr>
<tr>
<td>Brannan, D.A. 295</td>
</tr>
<tr>
<td>Brouwer’s fixed point theorem 48–9</td>
</tr>
<tr>
<td>Brouwer’s theorem on plane domains 40</td>
</tr>
<tr>
<td>Cartan–Théodory’s lemma 162</td>
</tr>
<tr>
<td>Cauchy–Riemann equations 266</td>
</tr>
<tr>
<td>Cauchy’s integral formula 128</td>
</tr>
<tr>
<td>Cauchy’s theorem 24, 31, 36</td>
</tr>
</tbody>
</table>

© Cambridge University Press
www.cambridge.org
Cesàro mean 156–7
Cesàro polynomial 300
chain 36
change in argument 29
Choquet’s theorem 287
circle 73
circular region 178
zeros and critical points 187
closed convex hull 287
closed under convolution 174
close-to-convex 405
close-to-convex domain 242
close-to-convex function 241–2
closing gap problem 112–5
Clunie, J. G. 171, 266
Clunie–Jack lemma 266
clusterset 58
and maximum modulus, zeros on unit circle 239
coefficient bound
Kaplan class 294
Suffridge class 260
Cohn’s reduction lemma 372
coincidence theorem 47
compact open topology 128
comparison principle 19
complex curve 118
complex form of Bézout’s theorem 11
complex polynomial 1
conical surface 117
conjugate pair 1
conjugate polynomial 153
connected set 30
constant Jacobian 87, 105–24
containment condition, Suffridge convolution theorem 257
containment lemma 266
containment property 335
containment theorem for \(T(a, \beta) \) 286
for \(T_0(a, \beta) \) 292
continuation of inverse function 57
continuity
at infinity 83
of zeros 55
continuous change in argument 29
continuous logarithm 28
correspondence 382
and step function 392
correspondence domain 78
correspondence function 242
convex function condition 275
convex harmonic mapping, univalence theorem 391–2
convex hull 25
convex in direction of real axis 69
convex mapping 260
convex polygon, harmonic univalence criterion 400–1
convex sequence 157
convex set 24
convexity, of level region 360
convexity lemma 162
convexity preserving 141, 174, 279
functions 144
g.c. operator 170
operators and positive trigonometric polynomials 148
convexity theory 286–8
convolution 172
of harmonic functions 126
convolution condition, Suffridge angular separation 253
convolution containment theorem 280
convolution formula 127
convolution inequality 279
for \(T(w, \beta) \) 284
for \(T_0(w, \beta) \) 291
convolution lemma 269
convolution operator 132
extension property 141–3
extension theorem 142
convolution theorem 279
for \(S(w, \beta) \) 297
for \(T(w, \beta) \) 285
for \(T_0(w, \beta) \) 292
zeros on unit circle 254
Cordova–Ruscheweyh method 361
Craven, T. 306
Craven–Cordas–Smith conjecture 306
proof when all critical points real 311
proof when exactly 2 non-real zeros 308–10
critical circle 225
critical point 24, 186, 187
of Blaschke product 374
of logarithmic derivative 306; existence of non-real 307
of rational function 190
of real polynomial 305
of real rational functions, theorem on number of non-real 323–4
of strongly real rational function 321
on unit circle, univalence theorem 243
critical point inequality 359
critical point theorem 334
critical set 66
cross-cap 123
Cordas, G. 306
cycle 36
cylindrical surface 117
<table>
<thead>
<tr>
<th>Index</th>
<th>423</th>
</tr>
</thead>
<tbody>
<tr>
<td>de la Vallée Poussin means 160, 301</td>
<td></td>
</tr>
<tr>
<td>degree</td>
<td></td>
</tr>
<tr>
<td>of function on curve 29</td>
<td></td>
</tr>
<tr>
<td>of function on cycle 36</td>
<td></td>
</tr>
<tr>
<td>of function on rectilinear polygon 35</td>
<td></td>
</tr>
<tr>
<td>of harmonic polynomial 3</td>
<td></td>
</tr>
<tr>
<td>of Pinchuk mapping 93</td>
<td></td>
</tr>
<tr>
<td>of polynomial 1</td>
<td></td>
</tr>
<tr>
<td>of real analytic polynomial 4, 83</td>
<td></td>
</tr>
<tr>
<td>of trigonometric polynomial 144</td>
<td></td>
</tr>
<tr>
<td>degree estimate, Jacobian conjecture 102–4</td>
<td></td>
</tr>
<tr>
<td>degree principle 31, 37</td>
<td></td>
</tr>
<tr>
<td>for circle 34</td>
<td></td>
</tr>
<tr>
<td>for homotopic curves 41</td>
<td></td>
</tr>
<tr>
<td>for rational function 37</td>
<td></td>
</tr>
<tr>
<td>for simply connected domain 39</td>
<td></td>
</tr>
<tr>
<td>for starlike domain 33</td>
<td></td>
</tr>
<tr>
<td>for triangle 32</td>
<td></td>
</tr>
<tr>
<td>Descartes’ rule of signs 317</td>
<td></td>
</tr>
<tr>
<td>polynomials with all real zeros 318</td>
<td></td>
</tr>
<tr>
<td>Drichtier means 158</td>
<td></td>
</tr>
<tr>
<td>domain 30</td>
<td></td>
</tr>
<tr>
<td>dual 172</td>
<td></td>
</tr>
<tr>
<td>of (T(1, 1)) 271</td>
<td></td>
</tr>
<tr>
<td>duality 172</td>
<td></td>
</tr>
<tr>
<td>sums and products 23</td>
<td></td>
</tr>
<tr>
<td>duality principle 286</td>
<td></td>
</tr>
<tr>
<td>duality theorem</td>
<td></td>
</tr>
<tr>
<td>for (T(1, \beta)) 275</td>
<td></td>
</tr>
<tr>
<td>for (T(\alpha, \beta)) 282</td>
<td></td>
</tr>
<tr>
<td>for (T(\alpha, \beta)) 289</td>
<td></td>
</tr>
<tr>
<td>elementary mappings 109</td>
<td></td>
</tr>
<tr>
<td>ellipse 73</td>
<td></td>
</tr>
<tr>
<td>Enestöm–Kakeya theorem 281</td>
<td></td>
</tr>
<tr>
<td>Ruscheweyh generalisation 281</td>
<td></td>
</tr>
<tr>
<td>entire functions of finite order 327</td>
<td></td>
</tr>
<tr>
<td>with real zeros 343</td>
<td></td>
</tr>
<tr>
<td>Erdős, P 407</td>
<td></td>
</tr>
<tr>
<td>essential singularity 44</td>
<td></td>
</tr>
<tr>
<td>Euler gamma function 239</td>
<td></td>
</tr>
<tr>
<td>extending boundary inequalities 224</td>
<td></td>
</tr>
<tr>
<td>extension property 141</td>
<td></td>
</tr>
<tr>
<td>exterior of curve 34</td>
<td></td>
</tr>
<tr>
<td>extremal distance theorem 221</td>
<td></td>
</tr>
<tr>
<td>extremal polynomial 223</td>
<td></td>
</tr>
<tr>
<td>Suffridge 251</td>
<td></td>
</tr>
<tr>
<td>extreme point 287</td>
<td></td>
</tr>
<tr>
<td>of Kaplan class 293</td>
<td></td>
</tr>
<tr>
<td>Fejér means 147</td>
<td></td>
</tr>
<tr>
<td>Fejér-Riesz inequality 129</td>
<td></td>
</tr>
<tr>
<td>Fermat’s last theorem for polynomials 371</td>
<td></td>
</tr>
<tr>
<td>finite limiting value and asymptotic value 19</td>
<td></td>
</tr>
<tr>
<td>finite product duality lemma 175, 265, 270, 282</td>
<td></td>
</tr>
<tr>
<td>finite valence 84</td>
<td></td>
</tr>
<tr>
<td>and (N)-fold mapping 390</td>
<td></td>
</tr>
<tr>
<td>finite valence condition 390</td>
<td></td>
</tr>
<tr>
<td>fixed point 48</td>
<td></td>
</tr>
<tr>
<td>Fourier coefficient 129</td>
<td></td>
</tr>
<tr>
<td>Fourier series 129</td>
<td></td>
</tr>
<tr>
<td>function of bounded boundary rotation 298</td>
<td></td>
</tr>
<tr>
<td>fundamental group 42</td>
<td></td>
</tr>
<tr>
<td>of punctured plane 43</td>
<td></td>
</tr>
<tr>
<td>fundamental theorem of algebra 1, 22, 26, 48–50</td>
<td></td>
</tr>
<tr>
<td>g.c. kernel 169</td>
<td></td>
</tr>
<tr>
<td>g.c. operator 168</td>
<td></td>
</tr>
<tr>
<td>Galois 23</td>
<td></td>
</tr>
<tr>
<td>gamma function 239</td>
<td></td>
</tr>
<tr>
<td>Gauss–Lucas theorem 25, 185, 189, 201</td>
<td></td>
</tr>
<tr>
<td>generalised convolution operator 168, 279</td>
<td></td>
</tr>
<tr>
<td>genus of entire function 344</td>
<td></td>
</tr>
<tr>
<td>global homeomorphism, Jordan domain condition 59</td>
<td></td>
</tr>
<tr>
<td>global homeomorphism condition 58</td>
<td></td>
</tr>
<tr>
<td>Goodman–Rahman–Ratti theorem 207</td>
<td></td>
</tr>
<tr>
<td>Goursat method 32</td>
<td></td>
</tr>
<tr>
<td>Grace class 174, 253</td>
<td></td>
</tr>
<tr>
<td>Grace theorem for rational functions 263</td>
<td></td>
</tr>
<tr>
<td>Grace–Heawood theorem 198</td>
<td></td>
</tr>
<tr>
<td>Grace’s apolarity theorem 181</td>
<td></td>
</tr>
<tr>
<td>Grace’s theorem 216, 263, 282</td>
<td></td>
</tr>
<tr>
<td>additional forms 183–4</td>
<td></td>
</tr>
<tr>
<td>applied to Heff–Sendov conjecture 208–11</td>
<td></td>
</tr>
<tr>
<td>Grace–Szegő theorem 173</td>
<td></td>
</tr>
<tr>
<td>circular regions 179</td>
<td></td>
</tr>
<tr>
<td>linear functionals 177</td>
<td></td>
</tr>
<tr>
<td>proof 176–7</td>
<td></td>
</tr>
<tr>
<td>graph of surface 101</td>
<td></td>
</tr>
<tr>
<td>greatest common divisor 106</td>
<td></td>
</tr>
<tr>
<td>Hadamard representation of entire function 344</td>
<td></td>
</tr>
<tr>
<td>harmonic extension 129</td>
<td></td>
</tr>
<tr>
<td>of step function 395, containment theorem 396, univalence criterion 399</td>
<td></td>
</tr>
<tr>
<td>harmonic function 126</td>
<td></td>
</tr>
<tr>
<td>at non-isolated zero 53</td>
<td></td>
</tr>
<tr>
<td>convolution 126</td>
<td></td>
</tr>
<tr>
<td>locally 1–1 64</td>
<td></td>
</tr>
<tr>
<td>harmonic mapping and Blaschke product 377–82</td>
<td></td>
</tr>
<tr>
<td>harmonic multiplication operator 135</td>
<td></td>
</tr>
<tr>
<td>class 54 137</td>
<td></td>
</tr>
<tr>
<td>harmonic multiplication representation 135</td>
<td></td>
</tr>
<tr>
<td>harmonic polynomial 3, 50, 82</td>
<td></td>
</tr>
<tr>
<td>degree 2 73–8</td>
<td></td>
</tr>
<tr>
<td>on critical set 66–72</td>
<td></td>
</tr>
<tr>
<td>theorem on valence 72</td>
<td></td>
</tr>
<tr>
<td>valence near critical set 70–1 zeros 51, 54</td>
<td></td>
</tr>
</tbody>
</table>
harmonic series 126
Hayman, W.K. 206
Heine–Borel theorem 58
Helly selection theorem 146
highest common factor
2 110–11
3 115–17
Hilbert’s inequality 130
homeomorphism 57, 81
condition at infinity 57
of sphere 80
of unit disc 60
homologous 36
homology group 42
of punctured plane 43
homotopic 39
homotopic curves 40
homotopy classes 41
homotopy group 42
homotopy invariant 41
Hurwitz’s theorem 65
hyperbolic non-euclidean geometry 375
Ilieff–Sendov conjecture 206
application of Grace’s theorem 208–11
case of real polynomial 216
critical circle 225
extremal distance 221
extremal polynomial 223
independent of particular zero 225
nearest second zero 216
proof for zeros on unit circle 207
proof up to degree 5 211–12
proof when zero at origin 216
remaining zeros on unit circle 220
upper bound on distance 215
Ilieff–Sendov problem see Ilieff–Sendov conjecture
imaginary zeros 311–17
implicit function theorem 63
inequality
for analytic polynomials 151–2
for harmonic polynomials 154
implies surjectivity 101
instantaneous double reversal 100–1
integral mean theorem, zeros on unit circle 239
integral representation
of bounded convolution operator 168
of Kaplan classes 293
of non-vanishing polynomials 175
interpretation of convolution conditions 270
interspersed zeros and poles
on unit circle 234
real rational functions 319
interspersion lemma 232
interspersion of zeros and local maxima 238
interspersion theorem
real meromorphic function 327
real rational functions 320
unit circle 235
inverse function 56
branch 58
continuation 57–8
inverse function inequality 356
inverse function theorem 61
invertibility of harmonic multiplication
operator 137
inverting tract equation 18–19
inverting transformation 18–19
isolated zeros 8
iterate 49
Jack, I.S. 266
Jacobian 61, 124
Jacobian conjecture 81
algebraic resolution 124
condition in polar coordinates 88
degree of counter-examples 102–4
examples when true 87
proof for degree 2 85–6
proof under additional hypothesis 85
weak form 104–5
Jacobian determinant 61
Jacobian matrix 61
Jacobian operator, algebraic properties 91
Jacobian problem 89
geometric transformation 105
Jensen circle 304, 305
Jordan curve 39
Jordan curve theorem 39
Jordan domain 39
Jordan polygon
and dilation criterion 404
mapping problem 402
Julia–Carathéodory lemma 330
Kaplan, W. 241
Kaplan class 244, 277, 382, 385
coefficient bounds 294
extreme points 293
factorisation theorem 246
integral representation 293
K(1, 1) 271
linear functionals 293
Keller Jacobian conjecture 87
kernel 132
knot 120
Krein–Milman theorem 287
Kristiansen, G.K. 240
Lagrange’s interpolation formula 2
Laguerre–Pólya class 347
Laurent expansion 126
Lax’s theorem 153–4, 186
leading term 88
length of curve 85
level curve 86, 306–7, 350
geometry 310
of polynomials 351
level region 306, 352
and Smale’s conjecture 364
convexity 360
of rational function 353
Levin representation 332
Levin representation lemma 333
Lewandowski, Z. 242
Lewy’s theorem 64
limits of Suffridge’s extremal polynomials 258
linear form 181
linear functional 131, 177
on Kaplan class 293
on rational function 264–5
linear operator 132
Grace theorem 205
on polynomials 203
on rational functions 264
linear operator lemma 272–3
linearly accessible domain 302
Liouville’s theorem 26
Littlewood, J.E. 239
Lobachevsky 375
local multiplicity 56
local uniform convergence 128
locally bounded 128
locally 1–1 24, 82
function 56
harmonic functions 64
polynomial, topology 100
locating critical points 186
location of zeros given critical points 201–2
logarithm 28
logarithmic derivative
algebra 407
critical points 306
existence of non-real critical points 307
logarithmic derivative lemma 187
logarithmic differentiation 23
loop 28
loop lemma 121
Lyzzaik, A. 392
Magnus theorem 109
majorisation 171
mapping problem for Jordan polygons 402
Marden, M. 206
Mason’s theorem 370
max–min inequalities 200–1
maximum modulus 238
maximum principle 57
mean 145
meromorphic function 27, 45
monodromy theorem 58
multiple zeros 187
multiplicity 22
analytic expression 24
of function at point 44
of harmonic function with polynomial
co-analytic part 47
Nakai and Baba theorem 111
NE convex 376
NE line 375
nearest second zero 216
negative type: strongly real rational function 321
N-fold mapping
and finite valence 390
Fourier coefficients 391
of circle 382–7
non-Euclidean line 375
non-isolated zero 53
non-real critical points of real rational function 323–4
non-real zeros theorem 325
non-separating lemma 119
non-vanishing polynomials 173
norm
of operator 140
of self-inversive polynomial 153
normal family 128
null homotopic 41
number of isolated zeros of real analytic
polynomial 8
number of zeros 1
of real analytic polynomial 4
n-valent 66
open mapping 57
order
of critical point 353
of entire function 327
of meromorphic function 327
Orevkov, S. Yu 118
orientation 56
parabola 78
parabolic region 78
parametrisation 27
Parseval’s formula 131
partial fraction decomposition of rational
function 355
periodic 129
Pinchuk, S. 81, 118
Pinchuk surface 100
Pinchuk’s example 90–3
plane topology 39
p-mean preserving operator 169
Poincaré, H. 375
Poisson’s formula 128

Index

Polar coordinate 28

Polar derivative 185

Pole 27, 44

Pólya-Schoenberg conjecture 260, 275, 276

Pólya and Schoenberg’s theorem 161

Pólya’s theorem 347

polynomial

constant on curve 84

non-vanishing 173

with all real zeros, Descartes’ rule 318

with zeros on unit circle 231

polynomial mean 145

polynomially invertible 87, 105

Popoviciu conjecture 407

positive convolution operator 142

positive harmonic function 142

prepositive operator 138

positive trigonometric polynomial 144–51

and convexity preserving operator 148

representation 149

representation theorem 150

positive type, strongly real rational function 321

positivity lemma 157

prime degree 109–10

primitive 31

projection onto plane 89

projective plane 123

properties of Sylvester resultant 12

pseudo-surface 121, 123

pythagorean triples 372

quadratic polynomials 373

quadrilateral, harmonic mapping problem 405

radical 23

Rado–Kneser–Choquet theorem 59, 392

ratio of linear functionals 180

rational function

convolution containment theorem 265

critical points 190

distinct solutions 370

Grace theorem 263

in unit disc 193

linear functional theorem 264–5

linear operator theorem 264

proof of extended Grace theorem 269

strongly real/interdispersion theorem 320

with real critical points 325–6

real analytic polynomial 4, 27, 81

at infinity 13–19

real critical point 325

real polynomial 1, 304

critical point 305

Ilieff–Sendov conjecture 216

representation as sum of polynomials with real zeros 322

with imaginary zeros 311–17

real rational function

critical point theorem 323–4

interspersed zeros and poles on real axis 319

representation in terms of strongly real rational functions 321

real zeros, Descartes’ rule 318

rectilinear polygon 35

relatively prime degrees 109–10

removable singularity 44

repeated asymptotic value curve 18

repetition

of asymptotic values 16

of reduction process 15

third method 16–17

repetition property 102, 117

representation for harmonic polynomial 3

of complex polynomial 2, 3

of linear operator 132–3

residue 43

residue theorem 24, 27

resolving the singularity 13

resultant 124

and Jacobian 124

reverse inequalities 216

reversed asymptotic value curve 18

Riemann mapping theorem 35, 39

Riemann–Hurwitz formula 353

Robinson, S. 300, 303

Robinson’s conjectures 300–1

Rogosinski’s coefficient theorem 170

Rogosinski’s lemma 157

rotation conjecture 392

Rouché’s theorem 48

Rubinstein, Z. 207

rule of signs, Descartes’ 317

Ruscheweyh, St. 281

Ruscheweyh theorem for $S(\alpha, \beta)$ 297

$S(\alpha, \beta)$ class 298

Schmeisser, G. 216

Schönflies theorem 59

Schwarz function 168

Schwarz’s lemma 60, 234

second derivative, non-real zeros 325

second dual 172

second zero 216

Cambridge University Press
0521400686 - Complex Polynomials
T. Sheil-Small
Index

© Cambridge University Press

www.cambridge.org
self-intersections 123
self-inversive polynomial 149, 152, 228
norm theorem 153
on unit circle 229
representation lemma 254
zeros and critical points 230
Sendov, B. 206
sense preserving 56, 61
sense reversing 56, 61
separated sets 30
separation by a line 186
series representations 125
shift lemma 69
shift operator 135
sign variation 161
simply-connected domain 35, 38, 42
simply-connected surface 89, 117
simultaneous algebraic equations 26
simultaneous equations 81
sine polynomial inequality 156
singularity 27, 44
Smale’s conjecture 358
Blaschke product approach 365
critical points and minimum points 363
generalisations 367
proof for critical points on circle 361–2
proof for degrees 2, 3, 4 359–60
real critical points 368
Smith, W. 306
solving algebraic equations 20
sphere 80
starlike, of order 1/2 275
starlike approximation lemma 276, 283
starlike domain 33
starlike function condition 275
step function 378
and convex curve 392
stereographic projection 38, 80
strictly positive operator 138
strongly real meromorphic function 327
inequality 332
representation theorem 327
strongly real rational function 319
critical point 321
example 321
positive or negative type 321
strongly real interpolation theorem 320
subordination 168
subordination inequality 239
subordination principle 234
successive derivatives 413
Szegő’s theorem 407
extension 413
Suffridge, T.J. 241
Suffridge class 253
coefficient bound 260
duality condition 253
Suffridge univalence criterion 243
Suffridge’s convolution theorem 254, 261
Suffridge’s extremal polynomials 251
limits 238
Suffridge’s theorem
condition for proving containment 257
proof of part (c) 255
summability theory 145
surface classification theorem 121
surjectivity, failure of Pinchuk mapping 100
Sylvester determinant 5
Sylvester matrix 10
Sylvester resultant
evaluation 11
extact degree 11
of $P = w 11$
Sylvester’s method of elimination 5
Sylvester’s theorem 165
symmetric linear form 181
Smale’s conjecture 359
Walsh’s theorem 182
Szegő’s inequality 155
$T(1, 1)$ class 271
$T(1, \beta)$ classification 273–5
$T(2, 2)$ class 302
$T(\alpha, \beta)$ class 269, 289
$T(m, \beta)$ class 282
$T(\alpha, \beta)$ class 289
tangent and argument of curve 387–90
tangent vector, Jacobian conjecture 89
Tochler, D. 360
Topelitz theorem 131
topological argument principle 44
topology of mapping, Jacobian problem 89
total variation of argument of curve 389
trigonometric polynomial 3, 50, 144
trigonometric series 125
two circles theorem 188
uniqueness theorem 2
unit disc, zeros 373
unit disc homeomorphisms 60
unit element 127, 128
univalence
and angular separation of critical points 243
and bounded boundary rotation 389
univalence region 197
univalence sector 200
univalent polynomials 241
variation 66, 72, 84
vitushkin, A.G. 118
<table>
<thead>
<tr>
<th>Index</th>
<th>428</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walsh, J.L. 305</td>
<td>zero(s) 22, 44</td>
</tr>
<tr>
<td>Walsh’s Blaschke product theorem 377</td>
<td>and critical points, self-inversive polynomials 230</td>
</tr>
<tr>
<td>Walsh’s theorem on symmetric linear forms 182</td>
<td>continuity 55</td>
</tr>
<tr>
<td>Walsh’s two circles theorem 188</td>
<td>exact number 56</td>
</tr>
<tr>
<td>weak apolarity 182</td>
<td>existence of zero path 64</td>
</tr>
<tr>
<td>weak Jacobian conjecture 105</td>
<td>given critical points 201–2</td>
</tr>
<tr>
<td>Wilmshurst, A. 52, 392</td>
<td>of derivatives 407</td>
</tr>
<tr>
<td>Wilmshurst’s conjecture 52</td>
<td>of second derivative 325</td>
</tr>
<tr>
<td>Wilmshurst’s example 52</td>
<td>on unit circle 231; angular separation condition 248; argument of polynomial 243; bounds on coefficients 239; integral mean/maximum modulus theorem 239; second angular separation condition 249; third angular separation condition 251</td>
</tr>
<tr>
<td>Wilmshurst’s theorem 54</td>
<td>zero cycle 36, 41</td>
</tr>
<tr>
<td>Wiman conjecture 343</td>
<td></td>
</tr>
<tr>
<td>winding number 29</td>
<td></td>
</tr>
<tr>
<td>of Jordan curve 46</td>
<td></td>
</tr>
<tr>
<td>winding number properties 34</td>
<td></td>
</tr>
<tr>
<td>Wright’s theorem 115</td>
<td></td>
</tr>
</tbody>
</table>

© Cambridge University Press

www.cambridge.org