Simulating Human Origins and Evolution

The development of populations over time and, on longer time scales, the evolution of species are both influenced by a complex of interacting, underlying processes. Computer simulation provides a means of experimenting within an idealised framework to allow aspects of these processes and their interactions to be isolated, controlled and understood.

In this book, computer simulation is used to model migration, extinction, fossilisation, interbreeding, selection and non-hereditary effects in the context of human populations and the observed distribution of fossil and current hominoid species. The simulations described enable the visualisation and study of lineages, genetic diversity in populations, character diversity across species and the accuracy of reconstructions, allowing new insights into human evolution and the origins of humankind for graduate students and researchers in the fields of physical anthropology, human evolution and human genetics.

KEN WESSEN has Ph.D.s in both Theoretical Physics and Human Evolution and has worked as a post-doctoral researcher in Computer Visualisation. He currently works in quantitative finance, and is an Adjunct Lecturer in the School of Anatomy and Human Biology at the University of Western Australia.
Cambridge Studies in Biological and Evolutionary Anthropology

Series editors

HUMAN ECOLOGY
C. G. Nicholas Mascie-Taylor, University of Cambridge
Michael A. Little, State University of New York, Binghamton

GENETICS
Kenneth M. Weiss, Pennsylvania State University

HUMAN EVOLUTION
Robert A. Foley, University of Cambridge
Nina G. Jablonski, California Academy of Science

PRIMATOLOGY
Karen B. Strier, University of Wisconsin, Madison

Also available in the series
21 Bioarchaeology Clark S. Larsen 0 521 65834 9 (paperback)
22 Comparative Primate Socioecology P. C. Lee (ed.) 0 521 59336 0
23 Patterns of Human Growth, second edition Barry Bogin 0 521 56438 7
(paperback)
24 Migration and Colonisation in Human Microevolution Alan Fix 0 521 59206 2
25 Human Growth in the Past Robert D. Hoppa & Charles M. FitzGerald (eds.)
0 521 63153 X
26 Human Paleobiology Robert B. Eckhardt 0 521 45160 4
27 Mountain Gorillas Martha M. Robbins, Pascale Sicotte & Kelly J. Stewart (eds.)
0 521 76004 7
28 Evolution and Genetics of Latin American Populations Francisco M. Salzano &
Maria C. Bortolini 0 521 65275 8
29 Primates Face to Face Agustín Fuentes & Linda D. Wolfe (eds.) 0 521 79109 X
30 Human Biology of Pastoral Populations William R. Leonard & Michael H.
Crawford (eds.) 0 521 78016 0
31 Paleodemography Robert D. Hoppa & James W. Vaupel (eds.) 0 521 80063 3
32 Primate Dentition Daris R. Swindler 0 521 65289 8
33 The Primate Fossil Record Walter C. Hartwig (ed.) 0 521 66315 6
34 Gorilla Biology Andrea B. Taylor & Michele L. Goldsmith (eds.) 0 521 79281 9
35 Human Biologists in the Archives D. Ann Herring & Alan C. Swedlund (eds.)
0 521 80104 4
36 Human Senescence – Evolutionary and Biocultural Perspectives Douglas E.
Crews 0 521 57173 1
37 Patterns of Growth and Development in the Genus Homo. Jennifer L. Thompson,
Gail E. Krovitz & Andrew J. Nelson (eds.) 0 521 82272 6
38 Neanderthals and Modern Humans – An Ecological and Evolutionary Perspective Clive Finlayson 0 521 82087 1
39 Methods in Human Growth Research Roland C. Hauspie, Noel Cameron & Luciano Molinari (eds.) 0 521 82050 2
40 Shaping Primate Evolution Fred Anapol, Rebecca L. German & Nina G. Jablonski (eds.) 0 521 81107 4
41 Macaque Societies – A Model for the Study of Social Organization Bernard Thierry, Mewa Singh & Werner Kaumanns (eds.) 0 521 81847 8
Simulating Human Origins and Evolution

K. P. WESSEN

University of Western Australia
Each change of many-coloured life he drew
Exhausted worlds, and then imagined new.

Samuel Johnson 1709–84

For Cindy, Jessamine and Xanthe
Contents

Preface

1 Introduction

1.1 Phylogenetics and human origins

1.2 Origin of modern humans

1.3 Computer methods in phylogenetics

Part I Simulating species

2 Overview

2.1 Hominoids

2.2 Hominids

3 Simulation design

3.1 Phylogenetic reconstruction

3.2 Example simulation and reconstruction

3.3 Analysis and evaluation

4 Running the simulation

4.1 A simple example

4.2 Migration

4.3 Advanced features

5 Simulating diversity

5.1 Recent reduction in diversity profiles

5.2 Recent maximum of diversity profiles

5.3 Studying parameter sensitivity

6 Simulating migration

6.1 Species migration with an amphora profile

6.2 Simulating hominoid migrations

Preface xiii

Introduction 1

1.1 Phylogenetics and human origins 1

1.2 Origin of modern humans 7

1.3 Computer methods in phylogenetics 11

Part I Simulating species 15

2 Overview 17

2.1 Hominoids 20

2.2 Hominids 22

3 Simulation design 26

3.1 Phylogenetic reconstruction 29

3.2 Example simulation and reconstruction 33

3.3 Analysis and evaluation 38

4 Running the simulation 42

4.1 A simple example 42

4.2 Migration 46

4.3 Advanced features 52

5 Simulating diversity 56

5.1 Recent reduction in diversity profiles 57

5.2 Recent maximum of diversity profiles 69

5.3 Studying parameter sensitivity 74

6 Simulating migration 84

6.1 Species migration with an amphora profile 84

6.2 Simulating hominoid migrations 91
Contents

6.3 Restricted migrations and interbreeding 95
6.4 Unrestricted migration with advantage 113

7 Discussion 118
7.1 Single-continent summary 118
7.2 Migration summary 122
7.3 Implications 126
7.4 Future work 128

Part II Simulating genealogies 131

8 Overview 133
8.1 Coalescent theory 134
8.2 The historical human population 139
8.3 Human mating patterns and fertility 141
8.4 Coalescence and biological ancestry 143

9 Simulation design 151
9.1 Parameters 152
9.2 Simulating and analysing a genealogy 153
9.3 Output data and visualisation 155

10 Simulating a single population 162
10.1 Constant demographics 162
10.2 Varying demographics 174

11 Simulating multiple populations 186
11.1 Sample simulation with regular migrations 186
11.2 Simulations with restricted migrations 191

12 Adding genetics to the genealogy 201
12.1 Modelling genetics with coalescent theory 201
12.2 Genetics models in the simulation 209
12.3 Sex-specific migrations and selection 211

13 Discussion 220
13.1 Single-population summary 220
13.2 Migration summary 223
Contents

13.3 Genetics summary 225
13.4 Implications for modern human origins 225
13.5 Future work 228

References 231

Index 239
Preface

Recent times have seen a great deal of activity and progress in human origins research, from the advent of molecular methods in the 1960s to the many important fossil hominid discoveries of the past few years. Nevertheless, the debate over whether particular fossil species are direct human descendants or not, and whether the fossil record and molecular results support a recent African origin or multiregional continuity, continues to rage. There is clearly a substantial need for fundamental work studying the methods employed in the interpretation of these data. The primary aim of the research presented in this volume is to begin to address this need by means of direct computer modelling and simulation of the many underlying and interacting processes.

Specifically, this volume describes the development and application of two related, but distinct, simulations, each designed to model important aspects of evolution in general, and the origin and evolution of humans in particular, as well as to provide substantial analysis and a wide variety of visualisations of the results.

The first simulation, Specialist, models the evolution of species and subspecies over millions of years, by starting with a single ancestral species with a particular suite of morphological ‘characters’ and allowing it to evolve in discrete steps. The characters are either hereditary or non-hereditary, and at each step a small number of these characters may change, either owing to random mutation or as a result of a change in the nature of the home environment of each species. Random extinction, fossilisation, interbreeding of subspecies, migration between four continents, and selective advantage are included in the model.

The main focus is on using the resulting species data to construct a phylogeny and migration history, which is then compared against the known true phylogeny. Two techniques of reconstruction are employed. The first technique involves matching existing species and fossils to the most closely (morphologically) related earlier fossil, whereas the second involves a reconstruction based on differences between the characters of the existing species only.

The second simulation, Genie, models several generations of individuals in up to three independent populations, thus allowing study of the effects of different mating patterns, fertility, adult sex ratio, migrations of various types, limiting population size, selective advantage and the impact of external,
natural disasters on common ancestry and the mixing of lineages generally. Once a complete genealogy is generated, common ancestry, lineage mixing and migrations are determined and analysed for the purely paternal and maternal genealogies (corresponding to Y chromosome and mitochondrial DNA inheritance), as well as the biological genealogy, or pedigree, where lineages are traced back through both parents simultaneously. This analysis is carried out on both a small sample of individuals and the full population, and individuals in the population carry both sex-specific and autosomal genes that are subject to mutation and recombination in controlled ways.

The simulations presented are essentially simulations of evolutionary change, and as such may be applied across a very large range of problems. As is apparent from the title of this volume, I have chosen to focus on problems relating to human and hominoid evolution, but extensions to many other areas are relatively straightforward, especially for the species/subspecies simulation.

Both simulations can do either single runs, with various visualisations and interactions, or multiple runs, with more limited visualisation but with basic statistical analysis of the results and all the required information for more advanced analysis provided in a simple text report. In particular, the simulated demographic, genetic and genotype data from Genie may be easily exported into other programs to provide more detailed or custom analysis. This removes the need for Genie to try to cover the myriad of possible analyses.

The programs that implement the simulations may be freely downloaded by following the links from http://school.anhb.uwa.edu.au/personalpages/kwessen.

In the interests of quality control, some minor limitations have been placed on the downloadable versions of the software, but these limitations can be removed via a simple registration process that will also allow me to provide updates and maintain some degree of dialogue with users. It is my hope that making the software available will lead to much further and diverse development of the simulations in collaboration with other researchers.

In addition, many of the figures in this book are black and white, or otherwise adjusted, versions of colour visualisations produced by the simulations. For this reason, the majority of simulations presented in the text are available for download along with the software, enabling them to be viewed in colour, and also enabling the many interactions provided by the simulation program to be explored in the context of these particular simulations. In order to gain a full appreciation of the results presented in this book, readers are urged to download the associated software and familiarise themselves in a hands-on way with the models and visualisations employed.
Preface

I take this opportunity to heartily thank Professor Charles Oxnard, without whose ongoing encouragement and highly infectious enthusiasm this project would never have begun, let alone finished. I also thank Professor Paul O’Higgins for his comments on an earlier version of this work; those comments were particularly instrumental towards providing the necessary impetus for me to undertake the publication of this work in book form. Professor Colin Groves also had several useful comments on an earlier manuscript, and various suggestions from Algis Kuliukas have led to valuable enhancements to the species simulation. Thanks are also due to Mat Abdy for his help in preparing this book’s associated website.

And, of course, my most sincere and personal thanks go to my beautiful wife Cindy and lovely daughters Jessamine and Xanthe, each of whom will, I’m sure, very much share my relief at seeing this book complete!