Index

Numbers in italics refer to figures

acetylcholine in dementing illnesses 132
nicotinic receptors 74
adenylate cyclase receptor types 79–81
second messenger system 80
system, in Alzheimer’s disease 79–81
adrenoreceptors, in Alzheimer’s disease 76
agyria/pachygyria, and epilepsy 157
AIDS dementia, and subcortical dementia 138
as white matter dementia 139
Alzheimer-type dementia differentiation from dementias 123
neurochemical studies 124–7; [3H]-D-aspartic acid binding 129; cholinergic neurones, retrograde degeneration 125–6, 131; cholinergic system changes 124, 131; cortical pyramidal neuron dysfunction 125, 127; neurofibrillary tangles 125, 127; neurotransmitter binding sites 125–6
Alzheimer-type disease, as subcortical or cortical dementia 123–7; classification 131; clinical correlates 131–2
Alzheimer’s disease basal forebrain neurones, shrinkage vs loss 63–4
beta amyloid protein in cortical plaques 97–106
characteristics 138
cognitive impairment, cholinergic deficits and cortical morphology 64
cortical ChAT activity 64
cortical neurotransmitter systems 64–5
cortical plaques 63–4, 96; and [3H]-d-aspartate 66; distribution 64–5; formation 66; kainate binding 71–2
[3H]-forskolin-binding deficit 79–81
hippocampal M2 receptors 73
hippocampal NMDA receptor binding 70–1
molecular neuropathology 95–118
muscarnic receptors 73; and pyramidal cells 75; ratio to pyramidal cells 74
neurofibrillary tangles 96; distribution 64–5; kainate binding 71–2; location 65
neurotransmitter system abnormalities 61–83
phosphoinositide system 81–2
risk factors 95
as subcortical dementia syndrome 139–50; ascertainment bias 146–7; ceiling effects 143; cerebral blood flow and metabolism studies, 140–1; clinical presentation 139; compared with PSNP 150; conclusions 149–50; EEG studies 139–40; neuropsychological evidence 147–8; neuropsychological test battery 141–2; severity 127; matching 141–3; speed–accuracy trade off and fatigue 145–6
transmitter replacement therapy, outlook 83
amino acids, in aetiology of schizophrenia 6–8
AMPA/quisqualate receptor 7
see also quisqualate receptors
amphetamine, increase of central dopamine function 3
amyloid plaques, see cortical plaques
APP secretase activity, beta amyloid deposition 102
[3H]-d-aspartate binding 65–6
glutamate uptake 7
[3H]-d-aspartic acid binding in ATD and PD 129
in Huntington’s chorea 130
basal ganglia, homovanillic acid 5
benzodiazepine receptors, reduction 78
beta amyloid, and tau protein, related pathologies 115
beta amyloid deposition
APP secretase activity 102

© in this web service Cambridge University Press
www.cambridge.org
beta amyloid deposition (cont.)
hereditary cerebral hemorrhage with
amyloidosis of Dutch type 103
molecular explanation 103
post-translational events 103
proposed stages 105
beta amyloid precursors 97
cellular localization 100
coding region, point mutation 103
correlation between tissue and cellular
distributions 99
diffuse plaques 102–3
extracellular beta amyloid pathology 102–3
gene, and disease locus 103
molecular cloning of cDNAs 97–9;
cellular localization 97
phosphorylation by protein kinase C 102
physiological role 99–100
in situ hybridization studies 99
structure 97, 98
beta amyloid sequence, antibodies,
subiculum/entorhinal cortex 105
Bmax 174
[^Br]-bromolisuride 175
[^7Br]-bromospiperone 174, 175
bradyphrenia, in Parkinson’s disease 148
brain development
 genetic regulation, summary 31–3
 molecular biology 30–1
 normal 26–30
 brain length, area and volume, in
 schizophrenia 16–17
 brain, regions affected, grey/white matter, in
 schizophrenia 19–20
 brain weight, in schizophrenia 16
 C-N-methylspiperone 174
[^11C]-raclopride 174
Ca^{2+} conductances and epileptogenesis 161
category test, schizophrenia 45
caudate nucleus, dopamine D1 receptor 4
cerebral asymmetries, in schizophrenia 9
cerebral blood flow and metabolism in schizophrenia,
 imaging 171–3
 in subcortical dementias 140–1
cerebral cortex
 major afferent cholinergic projections 62
neuronal loss 63
 ChAT, see choline acetyltransferase
cholecystokinin (CCK)
in Alzheimer’s disease 77–8
co-localization with tyrosine hydroxylase,
in schizophrenia 5–6
receptors, hippocampus 6
choline acetyltransferase (ChAT)
loss in Alzheimer-type dementia 124–6
loss in Alzheimer’s disease 62–3
in Parkinson’s disease 127
reduced levels in Alzheimer’s disease 74
reduction in activity, and nicotinic
receptor loss 74
cholinergic neurones in ATD, retrograde
degeneration 125–6
cholinergic receptors, in Alzheimer’s
disease 73–5
cholinergic system; changes in Alzheimer-type
dementia 124; in demented and
non-demented patients 127
role in Alzheimer’s disease 62–79;
adrenoreceptors 76; cholinergic
receptors 73–5; cortical interneuronal
systems 76–9; glutamate receptors 65–73; role of cholinergic system 62–79;
serotonin receptors 75–6
cogulation factor Xla, inhibition by
protease nexin II 99
cognitive impairment, and structural changes
in schizophrenia 22–31
computerized tomography in
schizophrenia 167, 168–9
Continuous Performance Test (CPT),
schizophrenia 48
corpus striatum, increased dopamine
density 4
cortex
alteration in schizophrenia 50–1
number of radial units (columns) 30
cortical dementia, see dementias
cortical interneuronal systems, in
Alzheimer’s disease 76–9
cortical plaques
GABAAergic neurones 77
and somatostatin-like immunoreactivity 77
cortical pyramidal neurones, loss in
Alzheimer’s disease 65
cortical receptors, somatostatin, presynaptic
location 78–9
corticotropin releasing factor, in
Alzheimer’s disease 77–8
cytomegalovirus, and epilepsy 157

182
decompression sickness, as white matter dementia 139
dementia praecox, Kraepelin 39–40
dementias, acetylcholine synthesis 64
dementias, cortical, neurochemical studies 123–35
dementias, cortical and subcortical differentiation 123–4
neurochemical studies; classification 131; clinical correlates 131–2
dementias, multi-infarct, and Alzheimer’s disease, EEC studies 139
dementias, subcortical, as clinical syndrome, definition 137–54
neuropsychologicalevidence 141–9; ascertainment bias 146–7; ceiling effects 143–5; matching for severity 141–3; severity 127; speed–accuracy trade off and fatigue 145–6; with or without white matter involvement 138–9
neurochemical studies 123–35
see also AIDS dementia, Alzheimer’s disease, Huntington’s chorea, Parkinson’s disease, Pick’s disease, Progressive supernuclear palsy
dementias, white matter 138–9
depression, mental slowing, and subcortical dementia 138
diffuse Lewy body dementia, neurochemical studies 129
diffuse plaques, beta amyloid precursors 102–3
DLPFC, activation 47, 49
dopamine, in aetiology of schizophrenia 3–5
dopamine D1 receptor binding 5
density 4–5
dopamine D2 receptor binding 5
neuroleptic drugs 3–4
PET and SPET imaging in schizophrenia 173–6; [13C]-raclopride 174; [18F]-bromolisuride 175; [18F]-bromospiperone 174, 175; Bmax 174; C-N-methylspiperone 174; ligands 173–4; pharmacological approaches 175–6;

Index

right putamen density 175; SCH 23390 175
dopamine markers in ATD 125, 132
in dementing illnesses 132
dopamine-ß-hydroxylase activity in ATD and PD, 128
Dopamine-neuropeptide, interactions, in schizophrenia 6
dorsal raphe, serotonin 63
dorsolateral lesions, behavioral deactivation, in schizophrenia 41–3
electroencephalography, in subcortical dementias, 139–40
entorhinal cortex, cytoarchitecture, in schizophrenia 22
epilepsies(y)
absence 155, 156, 157
benign myoclonic in infancy 155, 156
benign neonatal familial 155, 156
cellular and molecular basis 155–65
excitatory neurotransmission abnormalities 160–1
febrile convulsions 155
GABAergic deficits 159–60
genetic basis 155–6
juvenile myoclonic 155, 156, 157
membrane conductance abnormalities 161
mesial temporal sclerosis 158
network abnormalities and consequences of activity 161–2
and neuronal heterotopia 157
neuronal migration disorders 157–8
primary and secondary without inherited element 156, 157
secondary 156, 157–8
spouting 159
excitatory amino acid neurotransmission abnormalities in epilepsy, 160–61
excitatory amino acid as transmitter for neurofibrillary tangles, ATD 125–7, 131, 132

18FDG PET in schizophrenia 171, 172
[3H]-forskolin binding autoradiography 79
frontal cortex, number of large neurones 62
frontal lobe compromise by extra-frontal lesions 52–3
injury, schizophrenic symptoms and behavioral changes 40–52
Index

frontal lobe (cont.)

tests, Wisconsin Card Sorting Test 44-5
schizophrenia, structure, function, and connectivity 39-54

GABA

in Alzheimer’s disease 77-9
/benzodiazepine receptor abnormalities in epilepsy 159
in dementing illness 132
GABA A and GABA B 78
inhibitory transmitter of cerebral cortex 6 levels, post-mortem 3
as transmitter in ATD, 125, 132
GABAergic deficits in epilepsy, 159-60
GABAergic innervation, loss 77
GABAergic neurones, cortical plaques 77
gamma emitting radioisotopes (SPET) in schizophrenia 170-6
cerebral metabolism and blood flow compared with positron emitting radioisotopes 170-3
deoxyglucose technique 171
incorporation of data 171
oxygen technique 171
and receptor measurement 173-6;
dopamine D2 173-8
subject’s physiological state 170
gamma-aminobutyric acid, see GABA
gliosis, in schizophrenia, quantitative assessment 25-6
glutamate
binding in prefrontal cortex 50-1
excitatory neurotransmitter 6
neurones, in Parkinson’s disease 127
neurons, pre- and post-synaptic markers 7-8
receptors in Alzheimer’s disease 65-73;
kainate receptors 67, 68, 72-3;
markers 65-6; NMDA receptors 67, 69-71; quisqualate receptors 67, 68, 72-3
in schizophrenia, aetiology 6-8
glutamatergic receptor system, receptor subtypes
AMPA/quisqualate 7
kainic acid 7-8
NMDA 7-8
glutamatergic terminals, [3H]-aspartate binding 69
Gs binding protein, adenylate cyclase 80

Hallervorden–Spatz disease, cortical Lewy bodies 129
hereditary cerebral hemorrhage with amyloidosis of Dutch type, beta amyloid deposition 103
HIAA, concentrations in CSF 52
Hilar interneuron, intematal lobe epilepsy 159
hippocampal formation, tau protein, repeat isoform transcripts, 108
hippocampal temporal sclerosis, in epilepsy 158

Hippocampus

CCK receptors 6
in epilepsy: NMDA sensitivity 161;
sprouting 159
function and anatomy 30
left hippocampal formation, in schizophrenia 20-2
parahippocampal gyrus; anatomical links 29; pathology in schizophrenia 21
pyramidal cell loss, in schizophrenia 20-1
pyramidal cells, beta amyloid precursors 100-1
homovanillnic acid (HVA)
in basal ganglia 5
concentrations in CSF 52
5-HT2, binding in prefrontal cortex 50-1
5-HT2 receptors, in Parkinson’s disease 127, 132
5-HT, see serotonin
Huntington’s chorea

[3H]-o-aspartic acid binding 130
basal ganglia 130, 131
cerebral cortex 130, 131
differentiation from dementias 123
as subcortical dementia syndrome 138;
cerebral blood flow and metabolism studies 140;
EEG studies 140;
neuropsychological evidence 147-8;
neuropsychological profile 142;
severity of disease 142-6
HVA, see homovanillnic acid
5-hydroxytryptamine, see serotonin
K+ conductances and epileptogenesis 161
kainate receptor 7-8, 67, 68, 72-73
Kraepelin, on dementia praecox 39-40
t-dopa, increase of central dopamine function 3
lateral ventricles, enlargement in schizophrenia 50
left perisylvian hypometabolism in PET scan, Pick’s disease 149
leukoariosis, as white matter dementia 139
Lewy bodies
in dementia 129, 123
in subcortical dementia 149
limbic and cortical areas, dopamine innervation 3–4
limbic system, genesis of psychosis 43
lissencephaly, and epilepsy 157
locus coeruleus
neurome loss 64
noradrenaline 63
magnetic resonance imaging in schizophrenia 169–70
MAP2b, rat, structure 109
MAP2c, embryonic brain development 109
membrane conductance abnormalities in epilepsy 161
mesial temporal sclerosis, in epilepsy 158
microdysgenisis in epilepsy 157
microtubule-associated proteins MAP2 and MAP-U 106–8
Miller-Dieker syndrome, seizures and infantile spasms 157
multiple carboxylase deficiency and epilepsy 156
multiple sclerosis, and subcortical dementia 138; bradyphrenia 148–9; mental processing speed 148; as white matter dementia 139
muscarinic M1 receptors, coupling to associated G protein 81
N-methyl-D-aspartate (NMDA) receptor 7–8, 67, 69–71
in epileptogenesis 160–1
in schizophrenia 7–8
Na+ conductances and epileptogenesis 161
neurochemical markers in ATD 125
neurofibrillar tangles and SHT2 receptors 75
in Alzheimer-type dementia 125; effect on severity 127
double-labelling 114–15
paired helical filament 106–16
in progressive disease 123

in somatostatin-containing neurones 77
in subcortical dementia 149
neuroleptics, increase in dopamine D2 receptor 4
neuronal heterotopia, and epilepsy 157
neuronal migration, disorders, and epilepsy 157–8
neurones, numbers 62
neuropeptide Y
in Alzheimer’s disease 77–8
markers 63
neuropeptides, aetiology of schizophrenia 5–6
neurotensin, dopamine co-transmitter 5
neurotensin receptors, neuroleptic medication 6
neurotransmitter receptors, in Alzheimer’s disease 79–81
adenylate cyclase system 79–81
neurotransmitter system abnormalities, Alzheimer’s disease 61–83
nicotinic receptor, loss in Alzheimer’s disease 74
NIMH studies, twin studies 48–51
noradrenaline
locus coeruleus 63
loss in Parkinson’s disease 127
nucleus accumbens
dopamine D1 receptor 4
increased dopamine density 4
nucleus basalis, neuronal loss 63
olivopontocerebellar atrophy, cortical ChAT activity 64
paired helical filament
associated with tau proteins 112–13
formation 108
neurofibrillary tangles 106–16
structure 106
tau protein 106–16
parahippocampal gyrus
asymmetric development 29–30
function and anatomy 30
hippocampus, anatomical links 29
normal development 28
projections to 31
thinning, in schizophrenia 31
Parkinson’s disease, cortical ChAT activity 64
Index

Parkinson’s disease (cont.)
loss, 127; increase in muscarinic receptors 74
neurochemical studies 127–8; [3H]-d-aspartic acid binding 128
as subcortical or cortical dementia 123–7; classification 131; clinical correlates 131–2
as subcortical dementia syndrome 140–8; ascertainment bias 146–7; bradyphrenia 148; cerebral blood flow and metabolism studies 140–1; EEG studies 140; neuropsychological evidence 147–8; severity of disease 142–6; speed-accuracy trade off and fatigue 145–6
Wisconsin Card Sorting Test 145
periventricular white matter disease, and subcortical dementia 138
PET, see positron emitting radioisotopes phencyclidine (PCP) administration 7–8
receptor site 7–8
[3H]-phorbol ester binding, PKC 82
phosphoinositide system, in Alzheimer’s disease 81–2
Pick’s disease
categorization 64
cortical ChAT activity 64
differentiation from dementias 123
as subcortical or cortical dementia 123
PET scan findings 149–50; role of ascending cholinergic system 131
PKC, [3H]-phorbol ester binding 82
plaques, see senile plaques
pneumoencephalographic studies in schizophrenia 167–8
prefrontal cortex, pathology in schizophrenia 21
primates, non-human, ‘working memory’ studies 44
progressive supranuclear palsy striatal dopaminergic deficit 128
and subcortical dementia: cerebral blood flow and metabolism studies 140; definition 137; distinction from Alzheimer’s disease 138; EEG studies 140; historical studies, 137–9; as subcortical dementia syndrome 150; tests, 145
protease nexin II, inhibitor of coagulation factor Xla 99
psychosis, genesis 43
pyridoxine dependency and epilepsy 156
[3H]-quinuclidylbenzilate 73
quisqualate receptors 67, 68, 72–3
Ravens Progressive Matrices, frontal cerebral rCBF 48
RNase protection assay, mRNAs, location 108
SCH 23390 175
schizophrenia
aetiology: amino acids 6–8; dopamine overactivity 3–5; neuropeptides 5–6
anatomical neuropathology 49–52
brain length, area and volume 16–17
cerebral asymmetries 9
children, premorbid behavioral abnormalities 53
frontal dysfunction and cognitive impairment 43–7
frontal lobe structure, function, and connectivity 39–54
frontal physiological hypofunction 47–9
generalized deficit syndrome 45–7
glial, quantitative assessment 25–6
and glutamate, aetiology 6–8
ideational activity 41
MRI-derived measurements, consistency with post-mortem studies 51
neuroimaging 167–80; CT scan 167, 168–9; gamma emitting radioisotopes 170–6; MRI 169–70; positron emitting
Index

Wisconsin Card Sorting Test
frontal lobe lesions 44–5
in Parkinson’s disease 145
regional cerebral blood flow (rCBF) 47

schizophrenia 44–5, 169, 173

133xenon gamma in schizophrenia 171