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1
Introduction

1.1 Pairing in nuclei, superconductors, liquid 3He and neutrons stars

If one sweeps a magnetic field through a metallic ring (e.g. a ring made out

of lead) immersed in liquid helium (T ∼ 4 K) it induces a current which does

not show any measurable decrease for a year, and a lower bound of 105 years

for its characteristic decay time has been established using nuclear resonance

to detect any slight decrease in the field produced by the circulating current

(File and Mills (1963)). If a torus-shaped vessel filled with liquid helium below

the critical temperature Tc = 2.17 K (known as He II) and packed with porous

material, which provides very narrow capillary channels, is rotated around its

axis of symmetry and then brought to rest, the liquid continues to flow (Reppy and

Depatie (1964)), showing no reduction in the angular velocity over a twelve-hour

period, and indicating that He II can flow without dissipation. Using an adiabatic

cooling apparatus, Osheroff et al. (1972 a,b) found two anomalies in the pressure–

time curve of liquid 3He, when the volume was changed at a constant rate. At the

critical temperature Tc = 2.7 mK the slope of the curve suffered a discontinuity,

and at about Tc = 1.8 mK there was a singularity involving hysteresis (see also

Osheroff (1997) and Lee (1997)). If a deformed nucleus in its ground state

is set into a state of rotation by the action of a non-uniform, time-dependent

Coulomb field, it displays rotational bands with a moment of inertia which is a

fraction (between one-half to one-third) of the rigid moment of inertia (Belyaev

(1959), Bohr and Mottelson (1975)). Rotating neutron stars (pulsars) display

marked glitches, that is, sudden increases in the frequency of the emitted pulses

of radiation (McKenna and Lyne (1990), McCullough et al. (1990), Flanagan

(1990), Anderson et al. (1982)). All the above observations are examples of

phenomena known as superconductivity and superfluidity.

From a microscopic point of view, helium atoms are structureless spherical

particles interacting via a two-body potential. The attractive part of this potential,
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2 Introduction

arising from weak Van der Waals-type dipole, quadrupole, etc. forces, causes

helium gas to condense, at normal pressure, into a liquid at temperatures of 3.2 K

and 4.2 K for 3He and 4He respectively.

The striking difference in the behaviour of 3He and 4He at even lower tem-

peratures, in particular the fact that the critical temperature for 3He to become

superfluid is roughly one thousandth of the transition temperature of 4He, is a

consequence of the fact that 3He is composed of an odd number of fermions (two

protons, one neutron and two electrons), and is thus also a fermion, while 4He,

containing one more neutron, is a boson. Since in a Bose system single-particle

states may be multiply occupied, at low temperatures this system has a tendency

to condense into the lowest-energy single-particle state (Bose–Einstein conden-

sation). It is believed that the superfluid transition in 4He is a manifestation of

Bose–Einstein condensation (see e.g. Leggett (1989), Pitaevskii and Stringari

(2003), Pethick and Smith (2002)).

The basic feature of the Bose condensate is its phase rigidity, i.e. the fact that

it is energetically favourable for the particles to condense into a single-particle

state of fixed quantum-mechanical phase, such that the global gauge symmetry is

spontaneously broken. For three-dimensional (3D-) systems, macroscopic flow

of the condensate is (meta) stable, giving rise to the phenomenon of superfluidity

(frictionless flow).

In a Fermi system, on the other hand, the Pauli exclusion principle allows only

single occupation of fermion states. In the simplest approximation the fermions

move independently in an average potential and occupy the lowest available

single-particle states up to a Fermi energy εF. Fermions with energy near εF are,

in a variety of systems, subject to a pairing residual interaction. The associated

pairing correlations are important for understanding the structure of the low-

lying states of nuclei, the properties of neutron stars and those of metals and

of liquid helium 3He at low temperatures. The relevant fermions are nucleons

in nuclei, and in neutron stars, electrons in superconductors and 3He atoms in

liquid helium.

The pairing interaction leads to pairs of fermions bound in states coupled

to integer spin (zero or one). These pairs, whose structure is different for each

physical system, behave like bosons, and can at low temperatures Bose-condense,

the condensate being characterized by macroscopic quantum coherence leading

to the superconducting or superfluid phase. The mechanism and the consequences

of this condensation in the case of nuclei is the subject of the present monograph.

Particular emphasis is placed on the study of quantal-size-effects (QSE). These

effects are due to the fact that the nucleus is a finite many-body system where the

surface plays a paramount role. In fact, the nuclear surface is not only the source

of space quantization and thus of the discreteness of the single-particle levels,

but also, by vibrating as a whole, of the existence of collective surface modes.

Furthermore, because the length at which Cooper pairs are correlated is much

www.cambridge.org/9780521395403
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-39540-3 — Nuclear Superfluidity
David M. Brink , Ricardo A. Broglia
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.2 Macroscopic wavefunction and phase rigidity 3

larger than the nuclear dimension, the nuclear superfluid can be viewed as a zero-

dimensional system. Because the number of pairs which build the condensate is

small, fluctuations become very important.

1.2 Macroscopic wavefunction and phase rigidity

The central idea of the macroscopic quantum state is represented by assigning a

macroscopic number of particles to a single wavefunction (�̃) (see e.g. Anderson

(1964, 1984), Mercerau (1969), Tilley and Tilley (1974), Bruus and Flensberg

(2004)). These particles are assumed to have condensed into a single state. This

condensation results in a macroscopic density of particles (ρs) sharing the same

quantum phase (
). The resulting wavefunction is then �̄ = � exp (i
). In this

form ρs = (�̄∗�̄) is not the usual probability of finding a particle but, owing to

the macroscopic number of particles involved, is actually the effective particle

density. Both � and 
 may be functions of space and time and their variations

will therefore determine the motion of the quantum fluid.

In what follows we shall be more interested in understanding the consequences

the r-dependence of 
 has on the behaviour of the system and somewhat neglect

the r-dependence of �. Since, by definition, the particles are in precisely the

same state and must therefore behave in an identical fashion, the equations of

motion for the macrostate must also be identical to the equations of motion

for any single particle in this state. Because the phase is common to so many

particles, its effects do not average out on a macroscopic scale, but remain to

fundamentally determine the behaviour of the system.

Changes in the wavefunction are of course determined by the Schrödinger

equation. In particular, the centre of mass velocity ( 	V ) can be calculated for this

wavefunction from the velocity operator (	v) common to all the particles

	v = −
1

m∗
(i� 	∇ + e∗ 	A)

where e∗ and m∗ are, respectively, the (effective) charge and mass of the particles

and 	A is the vector potential. The centre of mass velocity is

	V = 1
2

{

�̄ 	v +�̄ + + �̄ +	v�̄
}

/
(

�̄ +�̄
)

giving a current

	J = e∗ρs
	V =

e∗ρs

m∗

(

� 	∇
 − e∗ 	A
)

. (1.1)

By taking the curl of this equation one can derive another equation of signifi-

cance, namely

	∇ × 	J +
ρse

∗2

m∗c
	B = 0. (1.2)
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4 Introduction

This is the solution found by F. London and H. London (London, 1954) of the

relation

∂

∂t

(

	∇ × 	J +
ρse

∗2

m∗c
	B

)

= 0. (1.3)

This equation together with the Maxwell equation

	∇ × 	B =
4π

c
	J , (1.4)

characterizes a medium that conducts electricity without dissipation. In fact, in

such circumstances, electrons under the effect of an electric field will be freely

accelerated without dissipation so that their mean velocity 	vs will satisfy

m∗ d 	vs

dt
= −e∗ 	E .

Since the current density carried by these electrons is 	J = −e∗vsρs, the above

equation can be written as

d

dt
	J =

ρse
∗2

m∗
	E . (1.5)

The Fourier transform of this equation gives the ordinary AC conductivity for

an electron gas of density ρs in the Drude model, when the relaxation time τ

becomes infinitely large, that is,

	J = σs(ω)E(ω)

where

σs(ω) = lim
τ→∞

σ (ω)

is the frequency dependent (or AC) conductivity

σ (ω) =
σ0

1 − iωτ
,

the zero-frequency conductivity being

σ0 =
ρse

∗2

τ

m∗
.

Substituting equation (1.5) into Faraday’s induction law

∇ × 	E = −
1

c

∂ 	B

∂t
,

one finds equation (1.3). In other words, 	∇ × 	J + ρse
∗2

m∗c
	B = C characterizes a

non-dissipative electric medium. The more restrictive London equation, which
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1.2 Macroscopic wavefunction and phase rigidity 5

specifically characterizes superconductors and distinguishes them from mere

perfect conductors, requires in addition C = 0.

The reason for replacing (1.3) by (1.2) is that the latter equation leads directly

to essential experimental facts, by forbidding currents or magnetic fields internal

to the superconductor except within a layer of thickness � =
(

m∗c2

4πρse∗2

)1/2

≈

42
(

rs

a0

)3/2 (

ρ

ρs

)1/2

(London penetration depth) of the surface, r0 = aBrs being

the Wigner-Seit cell radius of the system under consideration, defining the density

ρ (r0 = (4πρ/3)−1/3). In fact, equations (1.2) and (1.4) imply

∇2 	B =
4πρse

∗2

m∗c2
	B,

∇2 	J =
4πρse

∗2

m∗c2
	J ,

where the relation 	∇ × ( 	∇×) = 	∇( 	∇·) − ∇2 was used. Assuming a semi-infinite

superconductor occupying the half space x > 0,

B(x) = B(0)e−x/�,

and

J (x) = J (0)e−x/�.

Thus, the London equation implies the Meissner effect, along with a specific

picture of the surface currents that screen out the applied field. These currents

occur within a surface layer of thickness 102 − 103 Å. Within this same surface

layer the field drops continuously to zero, predictions which are confirmed,

among other things, by the fact that the field penetration is not complete in

superconducting films as thin as or thinner than the penetration depth �.

Let us now return to equation (1.1). This relation can be obtained by minimiz-

ing the free energy of the system with respect to the phase 
. In other words,

subject to a phase gradient, the system minimizes its energy by carrying a current

even in thermodynamical equilibrium, and such a current is always dissipation-

less. This is true both for charged systems (like, e.g., metals where e∗ = 2e and

m∗ = 2me), as well as for neutral systems (like, e.g., He II, where e∗ = 0 and

m∗ = m4).

Of course there is an energy cost for the system to carry the current, but

as long as this cost is smaller than the alternative which is to go out of the

superfluid or superconducting state, the current carrying state is chosen. The

critical current is reached when the energies are equal (and equal to the value of

the gap, see Sections 1.4 and 1.5 and Figs. 1.6 and 1.7), and then the superfluid

or superconductor goes into the normal state (see equations (1.17) and (1.21),

respectively).
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6 Introduction

Within this context, it should be noted that the appearance of the excitation

gap is not the reason for the superfluidity or superconductivity itself, but a con-

sequence of the spontaneous symmetry breaking of gauge invariance. In fact,

gapless superconductors do exist (in this connection see Sections 5.3 and 6.2.1).

1.3 Broken symmetry and collective modes

In many phase transitions, such as that to the ferromagnetic state, or from the

normal to the superconducting state, or again from a spherical to a deformed

nucleus, the ground state of the low-temperature phase has a lower symmetry

than the Hamiltonian used to describe the system. The situation is one of broken

symmetry. In cases where the symmetry group that is broken is continuous

(e.g. the rotation group), a new collective mode appears, whose frequency, in

the absence of long-range forces, goes to zero in the long wavelength limit

(Anderson Goldstone Nambu (AGN) mode (see Chapter 4)). For the ferromagnet,

the elementary excitations required by Goldstone’s theorem (Goldstone, 1961)

are Bloch’s spin waves (magnons), in which the magnetization precesses about

its direction in the ground state (see Figs. 1.1 and 1.2).

Superconductors furnish an example of a system in which the excitations

required by the symmetry-breaking process have a finite frequency in the

(c)

a a a
(a) (b) (c)

Figure 1.1. (a) Classical picture of the ground state of a simple ferromagnet; all spins are par-

allel. (b) A possible excitation; one spin is reversed. (c) The low-lying elementary excitations

are spin waves. The ends of the spin vectors precess on the surfaces of cones, with successive

spins advanced in phase by a constant angle (after C. Kittel (1968)). From Introduction to

Solid State Physics, 7th edition, by Charles Kittel, Copyright 1995 John Wiley & Sons Inc.

Reprinted with permission of John Wiley & Sons Inc.

a

(a)

(b)

Figure 1.2. A spin wave on a line of spins. (a) The spins viewed in perspective. (b) Spins

viewed from above, showing one wavelength. The wave is drawn through the ends of the

spin vectors (after Kittel (1968)). From Introduction to Solid State Physics, 7th edition, by

Charles Kittel, Copyright 1995 John Wiley & Sons Inc. Reprinted with permission of John

Wiley & Sons Inc.
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1.3 Broken symmetry and collective modes 7
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Figure 1.3. Excitation spectrum of density fluctuations in a quantum plasma with the density

of Al, as calculated in the random phase approximation. Plasmons are essentially undamped

(see also Section 8.3.4) for wavevectors less than qc, and are strongly damped (Landau

damping) beyond qc by the single particle–hole excitations, whose energies lie within the

hatched region (after Pines (1963)).

long wavelength limit (because of the infinite range of the Coulomb force):

the corresponding Goldstone mode is the familiar plasma oscillation (see

Fig. 1.3).

For a neutral fermion superfluid, on the other hand, the collective mode is the

zero-sound mode proposed by Anderson (1958) and Bogoliubov (1958a), which

has a vanishing frequency at long wavelengths (see Section 4.3.1).

An example of AGN boson in a neutral system is provided by the fourth sound

in superfluid 3He, which corresponds to the oscillatory motion of the superfluid

phase in a confined geometry (superleak) where the normal fluid is clamped. For

example, assume a porous medium. In it, the normal-fluid fraction (see equation

(1.12)) is clamped by the scattering of quasiparticles with the surface of the

very narrow channels. The superfluid fraction is barely affected by the confining

walls, provided that the channel diameter is greater than the coherence length

ξ (T ) (equation (1.32)), and thus may move freely. The oscillatory motion of

the superfluid phase in such a confined geometry is called fourth sound (see

Vollhardt and Wölfle (1990)). In the case of atomic nuclei, the very occurrence

of collective rotational degrees of freedom may be said to originate in a breaking

of rotational invariance, which introduces a ‘deformation’ that makes it possible

to specify an orientation of the system (Bohr and Mottelson, 1975). Rotation

(see Fig. 1.4) represents the collective mode associated with such a spontaneous
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Figure 1.4. Schematic representation of the (discrete) energy levels of the (ground state) rota-

tional band of a quadrupole deformed atomic nucleus as a function of the angular momentum

I (E = (�2/2I )I (I + 1), where I is the moment of inertia).

symmetry breaking (AGN boson). The full degrees of freedom associated with

rotations in three-dimensional space come into play if the deformation com-

pletely breaks the rotational symmetry, thus permitting a unique specification

of the orientation. If the deformation is invariant with respect to a subgroup of

rotations, the corresponding elements are part of the intrinsic degree of freedom,

and the collective rotational modes of excitation are correspondingly reduced,

disappearing entirely in the limit of spherical symmetry.

1.4 Superfluid 4He (He II)

4He becomes liquid under its own vapour pressure at 4.21 K. The liquid phase at

this temperature, helium I, behaves like a normal liquid, but at 2.17 K it shows

a further phase transition – to helium II. Helium II is a most peculiar liquid: it

shows superfluidity, i.e. a lack of viscosity when flowing through a narrow slit

or capillary. At 2.17 K the specific heat shows a very strong pronounced peak,

resembling the Greek letter λ, whence Ehrenfest suggested the name λ-point for

the transition point (see Fig. 1.5).

The theory developed by Landau (Landau (1941, 1947)) was constructed

upon the basic idea that the equilibrium properties of liquid helium below the

λ-point could be expressed in terms of the energy spectrum of the elementary
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1.4 Superfluid 4He (He II) 9

Figure 1.5. Specific heat of 4He (after Atkins (1959)).

excitations possible in helium, namely phonons and rotons. Landau considers the

quantization of liquids and reaches the conclusion that there are states possible

in the liquid for which

curl 	v = 0, (1.6)

where 	v is the velocity of the liquid. Note that this relation is obtained from

equation (1.1) for e∗ = 0 (neutral system). Such states correspond to potential

flow, as would be the case in classical hydrodynamics, because, just as there is

no continuous transition in quantum mechanics between states with zero angular

momentum and with non-vanishing angular momentum, in the same way there

may be no continuous transition between states with curl 	v = 0 and those with

curl 	v �= 0. Consequently, one concludes that there will be an energy gap �

between the lowest energy level corresponding to potential flow and the lowest

energy level of vortex motion (curl 	v �= 0). In order that the liquid be superfluid,

it is necessary that the vortex motions start at a higher energy than the potential

flow motions.

The spectrum of helium II can thus be seen as a superposition of two continuous

spectra: one corresponding to potential flow and one corresponding to vortex

motion. The potential flow part of the spectrum corresponds to longitudinal

waves, i.e. sound waves. The elementary excitations are thus phonons, the energy
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Figure 1.6. Phonon–roton spectrum suggested by Landau. Broken lines indicate superfluid

critical velocities. Dotted line shows free-particle parabola for comparison.

spectrum of which is known to be (Fig. 1.6)

εph = cs p,

where p is the momentum of the excitation while cs is the sound velocity.

The elementary excitations of the vortex motion were called rotons by Tamm.

The roton spectrum is given by

εr = � +
(p − p0)2

2μ
, (1.7)

where � is the energy gap mentioned above while μ is the inertia of the rotons.

It should be emphasized that the above two equations (see also Fig. 1.6) give

the energy of the excitation spectrum of the elementary excitations of the helium

II and not the energy spectrum of the single helium atoms

εsp =
p2

2m4

.

Note that given the dispersion relation shown in Fig. 1.6 it is difficult to speak

strictly of rotons and phonons as qualitatively different types of excitations. It

could be more correct to speak simply of the long wave (small p) and short wave

(p in the neighbourhood of p0) excitations. In any case, there is an essential

difference between phonons and rotons. Phonons can have zero energy in the

long wavelength limit and thus qualify as AGN modes (Anderson (1952, 1963),

Nambu (1959, 1960)), while rotons have always an energy ≥ � and can thus
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