Contents

Preface

1. Basic concepts, units, and laws of circuit theory
 1.1 Properties of the electrical circuit 1
 1.2 The lumped circuit model 3
 1.3 Charge and current 5
 1.4 Potential difference, energy and power 7
 1.5 Ideal voltage and current sources 11
 1.6 Kirchhoff's laws 13
 1.6.1 The current law 13
 1.6.2 Worked example on the current law 15
 1.6.3 The voltage law 16
 1.6.4 Worked example on the voltage law 17
 1.7 Resistance 18
 1.7.1 Ohm's law 18
 1.7.2 Power dissipation in resistance 20
 1.7.3 Resistances in combination 21
 1.8 Capacitance 23
 1.8.1 The voltage - current relationship for capacitance 23
 1.8.2 Energy storage in capacitance 24
 1.8.3 Capacitances in combination 24
 1.9 Inductance 26
 1.9.1 The voltage - current relationship for inductance 26
 1.9.2 Energy storage in inductance 28
 1.9.3 Inductances in combination 29
 1.10 Inductively coupled circuits 30
 1.10.1 Mutual inductance 31
 1.10.2 The coefficient of coupling 33
Table of Contents

1.10.3 The effective inductance of two series-connected coupled coils 35
1.11 Passive circuit components 36
1.12 Summary of basic circuit relations 37
1.13 Problems 37

2 Theorems and techniques of linear circuit analysis
2.1 Introduction 42
2.2 Voltage and current dividers 44
2.3 Mesh analysis 47
2.4 Worked example 50
2.5 The general mesh equations 52
2.6 The superposition and reciprocity theorems 55
 2.6.1 Superposition 55
 2.6.2 Reciprocity 58
2.7 Thévenin’s theorem 58
2.8 Worked example 61
2.9 Network transformations 64
 2.9.1 The Thévenin–Norton transformation 64
 2.9.2 The star–delta transformation 66
2.10 Nodal analysis 67
2.11 Comparison of mesh and nodal analysis 71
2.12 Worked example 73
2.13 Analysis of networks containing dependent sources 75
2.14 Worked example 78
2.15 Miscellaneous theorems and techniques 81
 ⊗2.15.1 The substitution and compensation theorems 81
 2.15.2 Circuit reduction 84
 ⊗2.15.3 Ladder networks 87
 ⊗2.15.4 Ring mains 88
 ⊗2.15.5 Worked example 90
2.16 Summary 92
2.17 Problems 93

3 Alternating current circuits
3.1 Introduction 98
3.2 A.C. voltage–current relationships for the linear circuit elements 101
3.3 Representation of a.c. voltage and current by the complex exponential: Phasors 105
Contents

3.4 Voltage-current relationships for the general network branch: Impedance
3.5 Phasor and impedance diagrams
3.6 Linear circuit theorems and techniques in a.c. circuit analysis
3.7 Worked example
3.8 Admittance
3.9 Frequency response: transfer function
3.10 A.C. bridges
3.10.1 The Schering bridge
3.10.2 The Wien bridge
3.11 Worked example
3.12 Inductively coupled circuits
3.13 Resonant circuits
3.13.1 Losses in inductors and capacitors
3.13.2 The series resonant circuit
3.13.3 The parallel resonant circuit
3.13.4 Worked example
3.13.5 Definition of Q-factor in terms of stored energy
3.13.6 Multiple resonance
3.13.7 Inductively coupled resonant circuits
3.14 Summary
3.15 Problems

4 Power and transformers in single-phase circuits
4.1 Introduction
4.2 Average power
4.3 Reactive power and apparent power
4.4 Power factor
4.5 Worked example
4.6 Complex power
4.7 The ideal transformer
4.8 Worked example
4.9 Single-phase power transformers
4.10 Worked example
4.11 Transformer tests
4.12 Voltage regulation
4.13 Conditions for maximum efficiency
4.14 The autotransformer
4.15 Maximum power transfer
4.16 The transformer bridge
Table of Contents

5 Three-phase alternating current circuits

5.1 Introduction 231
5.2 Advantages of three-phase systems 233
5.3 Three-phase circuits 233
5.3.1 Phase and line voltages 233
5.3.2 Balanced load 236
5.3.3 Worked example 237
5.3.4 Star and delta connections 239
5.3.5 Worked example 241
5.3.6 Use of Y–Δ transformation 244
5.3.7 Unbalanced load 245
5.3.8 Worked example 245
5.4 Power, reactive power and apparent power in balanced loads 248
5.5 Worked example: power factor correction 249
5.6 Three-phase power measurement 251
5.6.1 Alternating current meters 251
5.6.2 Methods of power measurement 253
5.6.3 Worked example 257
5.7 Transformers for three-phase systems 258
5.7.1 Applications 258
5.7.2 Equivalent circuit parameters 261
5.7.3 Worked example 261
5.7.4 Harmonic currents 269
5.8 Phase transformation 270
5.9 Instantaneous power to balanced load 273
5.10 Summary 275
5.11 Problems 276

6 Transient and steady-state analysis

6.1 Introduction 280
6.2 Qualitative analysis of the RL circuit 281
6.3 Mathematical analysis of the RL circuit 283
6.4 Time constant 286
6.5 Natural response of some basic series circuits 288
6.5.1 RL circuit 288
6.5.2 RC circuit 290
6.5.3 RLC circuit 291
6.5.4 Q-factor and logarithmic decrement 294
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6</td>
<td>Total response</td>
<td>295</td>
</tr>
<tr>
<td>6.6.1</td>
<td>(RL) circuit with sinusoidal driving voltage</td>
<td>296</td>
</tr>
<tr>
<td>6.6.2</td>
<td>(RC) circuit with constant voltage source</td>
<td>297</td>
</tr>
<tr>
<td>6.6.3</td>
<td>Worked example</td>
<td>297</td>
</tr>
<tr>
<td>6.6.4</td>
<td>(RLC) circuit with constant voltage source</td>
<td>299</td>
</tr>
<tr>
<td>6.6.5</td>
<td>(RLC) circuit with sinusoidal driving voltage</td>
<td>300</td>
</tr>
<tr>
<td>6.6.6</td>
<td>(RLC) circuit with sinusoidal driving voltage and (\omega_0 \approx \omega_n)</td>
<td>301</td>
</tr>
<tr>
<td>6.7</td>
<td>The D-operator</td>
<td>303</td>
</tr>
<tr>
<td>6.7.1</td>
<td>The operators (D) and (D^{-1})</td>
<td>304</td>
</tr>
<tr>
<td>6.7.2</td>
<td>Solution of differential equations by D-operator</td>
<td>305</td>
</tr>
<tr>
<td>6.7.3</td>
<td>D-impedance</td>
<td>309</td>
</tr>
<tr>
<td>6.7.4</td>
<td>Worked example</td>
<td>309</td>
</tr>
<tr>
<td>6.7.5</td>
<td>Thévenin’s theorem in transient analysis</td>
<td>313</td>
</tr>
<tr>
<td>6.7.6</td>
<td>Differentiating and integrating circuits</td>
<td>316</td>
</tr>
<tr>
<td>6.8</td>
<td>The unit step and related driving functions</td>
<td>317</td>
</tr>
<tr>
<td>6.8.1</td>
<td>Step function</td>
<td>318</td>
</tr>
<tr>
<td>6.8.2</td>
<td>Impulse function</td>
<td>319</td>
</tr>
<tr>
<td>6.8.3</td>
<td>Worked example</td>
<td>323</td>
</tr>
<tr>
<td>6.8.4</td>
<td>Ramp and other singularity functions</td>
<td>325</td>
</tr>
<tr>
<td>6.8.5</td>
<td>Delayed functions</td>
<td>326</td>
</tr>
<tr>
<td>6.9</td>
<td>The Laplace transform</td>
<td>327</td>
</tr>
<tr>
<td>6.9.1</td>
<td>Definition of the Laplace transform</td>
<td>328</td>
</tr>
<tr>
<td>6.9.2</td>
<td>Laplace transforms of some functions of time</td>
<td>328</td>
</tr>
<tr>
<td>6.9.3</td>
<td>Partial fractions</td>
<td>334</td>
</tr>
<tr>
<td>6.9.4</td>
<td>Network analysis by Laplace transform</td>
<td>340</td>
</tr>
<tr>
<td>6.9.5</td>
<td>Worked example</td>
<td>345</td>
</tr>
<tr>
<td>6.9.6</td>
<td>Generalized impedance, network function and impulse response</td>
<td>347</td>
</tr>
<tr>
<td>6.9.7</td>
<td>Third and higher order networks</td>
<td>352</td>
</tr>
<tr>
<td>6.9.8</td>
<td>Worked example</td>
<td>355</td>
</tr>
<tr>
<td>6.9.9</td>
<td>Further Laplace transform theorems</td>
<td>357</td>
</tr>
<tr>
<td>6.10</td>
<td>Pole-zero methods</td>
<td>359</td>
</tr>
<tr>
<td>6.11</td>
<td>Worked example</td>
<td>372</td>
</tr>
<tr>
<td>6.12</td>
<td>Pulse and repeated driving functions</td>
<td>375</td>
</tr>
<tr>
<td>6.12.1</td>
<td>Pulse response of first order circuits</td>
<td>375</td>
</tr>
<tr>
<td>6.12.2</td>
<td>Delayed singularity functions: transforms of recurrent waveforms</td>
<td>380</td>
</tr>
<tr>
<td>6.12.3</td>
<td>Response by the Laplace transform</td>
<td>385</td>
</tr>
<tr>
<td>6.13</td>
<td>Worked example</td>
<td>389</td>
</tr>
<tr>
<td>6.14</td>
<td>Convolution</td>
<td>392</td>
</tr>
<tr>
<td>6.14.1</td>
<td>Representation of a function by an impulse train</td>
<td>392</td>
</tr>
</tbody>
</table>
7 Non-linear circuit analysis

7.1 Introduction: linear and non-linear elements 418
7.2 Graphical analysis 419
7.3 Small-signal models 425
 7.3.1 Non-linear resistor model 425
 7.3.2 Transistor model 426
7.4 Piecewise-linear circuits 428
 7.4.1 Piecewise-linear approximation 428
 7.4.2 The ideal diode 429
 7.4.3 Combinations of resistances and ideal diodes 430
 7.4.4 The real diode 437
 7.4.5 The Zener diode 437
 7.4.6 Analysis of piecewise-linear circuits 440
 7.4.7 Worked example 440
 7.4.8 Synthesis of piecewise-linear circuits 441
 7.4.9 Worked example 443
7.5 Analytical methods 443
7.6 Rectifier circuits 448
 7.6.1 Half-wave rectifier 448
 7.6.2 Worked example 451
 7.6.3 Full-wave rectifier 453
7.7 Thyristor circuits 455
7.8 Fourier analysis of periodic waves 460
 7.8.1 Fourier expansion 460
 7.8.2 Worked example 463
 7.8.3 Odd and even functions 466
 7.8.4 Worked example 466
 7.8.5 Fourier expansion for rectifier output 469
 7.8.6 Expansion of functions of time 471
 7.8.7 Complex exponential form of Fourier series 471
†7.8.8 Expansions for r.m.s. values and power 474
 7.8.9 Summary of formulae 479
†7.9 Filter circuits for rectifiers 481
 7.9.1 Inductor 482
 7.9.2 L-section 484
Contents

7.9.3 Capacitor
7.9.4 π-section
7.10 Summary
7.11 Problems

8 Two-port networks
8.1 Introduction
8.2 Admittance, impedance and hybrid parameters
8.2.1 Admittance parameters
8.2.2 Impedance parameters
8.2.3 Hybrid and inverse hybrid parameters
8.3 Equivalent circuits and circuit models
8.4 Transmission, inverse transmission and $ABCD$ parameters
8.5 Matrix notation
8.6 Worked example
8.7 Relationships between direct and inverse $ABCD$ parameters
8.8 Parameter relationships for π- and T-networks
8.9 Worked example
8.10 Cascaded two-ports and chain matrices
8.11 Worked example
8.12 Series and parallel connections of two-ports
8.13 Worked example
8.14 Iterative and image impedances
8.14.1 Iterative impedances
8.14.2 Image impedances
8.15 Attenuators
8.16 Worked example
8.17 Insertion loss
8.18 Worked example
8.19 Summary
8.20 Problems

Appendices
A Units, symbols and abbreviations
B The general mesh equations and proofs of the network theorems
C Computer programs
D Laplace transform pairs

Bibliography
Answers to problems
Index