Contents

ANALOG

Chapter 1: Foundations
Overview: Chapter 1 .. 1
Class 1: DC Circuits ... 3
 Worked example: Resistors & instruments 15
Lab 1: DC circuits ... 24

Class 2: Capacitors & RC Circuits 32
 Worked example: RC circuits 46
 A Note on reading capacitor values 51
Lab 2: Capacitors ... 54

Class 3: Diode Circuits .. 61
 Worked example: Power supply 71
Lab 3: Diode circuits ... 75
 Wrap-up: Ch. 1: Review 80
 Jargon and terms ... 81

Chapter 2: Transistors (bipolar)
Overview: Chapters 2 & 3 82
Class 4: Transistors I: First Model 84
 Worked example: Emitter follower 90
Lab 4: Transistors I ... 94

Class 5: Transistors II: Corrections to the first model: Ebers-Moll; r_e; applying this new view ... 100
 Worked example: Common-emitter amplifier (bypassed emitter) .. 115
Lab 5: Transistors II ... 118

Class 6: Transistors III: Differential amplifier; Miller effect .. 124
 Worked example: Differential amplifier 131
Lab 6: Transistors III ... 134
 Wrap-up Ch. 2: Review 139
 Jargon and terms ... 140

Chapter 3: Field Effect Transistors
Class 7: FETs I (linear applications) 142
 Worked example: Current source, source follower 153
Lab 7: FETs I (linear) ... 156
 (We return to FETs in Lab 11)

Chapter 4: Feedback and Operational Amplifiers
Overview: Feedback: Chapters 4, 5 & 6 163
Class 8: Op Amps I: Idealized view 166
 Worked Example: Inverting amplifier; summing circuit .. 175
Lab 8: Op amps I .. 175

Class 9: Op Amps II: Departures from ideal 184
 Worked example: Integrators; effects of op amp errors ... 196
Lab 9: Op amps II .. 200

Chapter 4 (continued); Chapter 5 Active Filters & Oscillators
Class 10: Op Amps III: Positive Feedback, Good and Bad: comparators, oscillators, and unstable circuits; a quantitative view of the effects of negative feedback ... 207
 Appendix: Notes on op amp frequency compensation .. 222
 Worked example: Effects of feedback (quantitative) .. 224
 Schmitt trigger .. 227
 Op Amp Innards: Annotated schematic of the LF411 ... 232
Lab 10: Positive feedback, good and bad 233
 Wrap-up Chs. 4 & 5: Review 242
 Jargon and terms ... 243

Chapter 3: Field Effect Transistors (revisited)
Class 11: FETs II: Switches (power switching and analog switch applications) 244
 Worked example: Sample and hold 250
Lab 11: FET switches ... 255
 Wrap-up Ch. 3: Review 264
 Jargon and terms ... 265

Chapter 6: Voltage Regulators and Power Circuits
Class 12: Voltage Regulators 267
Lab 12: Voltage regulators 274
 Wrap-up Ch. 6: Jargon and terms 280
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 19: Assembly Language; Inside the CPU; I/O Decoding .. 455</td>
</tr>
<tr>
<td>Supplementary notes: introduction to assembly language .. 467</td>
</tr>
<tr>
<td>Lab 19: µ2: I/O .. 471</td>
</tr>
<tr>
<td>Class 20: µ3: A/D ↔ D/A Interfacing; Masks; Data tables .. 479</td>
</tr>
<tr>
<td>Lab 20: Subroutines; More I/O Programming .. 489</td>
</tr>
<tr>
<td>Class 21: µ4: More Assembly-Language Programming; 12-bit port 498</td>
</tr>
<tr>
<td>Worked example: 10 tiny programs .. 503</td>
</tr>
<tr>
<td>Worked Example: 12-bit frequency counter .. 518</td>
</tr>
<tr>
<td>Hand assembly: table of codes .. 521</td>
</tr>
<tr>
<td>Lab 21: A/D, D/A, Data Handling .. 525</td>
</tr>
<tr>
<td>Class 22: µ5: Interrupts & Other 'Exceptions' .. 535</td>
</tr>
<tr>
<td>Debugging aid: Register Check in two forms .. 541</td>
</tr>
<tr>
<td>Lab 22: 'Storage scope'; Interrupts & other 'exceptions' .. 548</td>
</tr>
<tr>
<td>Class 23: µ6: Wrap-up: Buying and Building .. 562</td>
</tr>
<tr>
<td>Lab 23: Applying your microcomputer ('Toy Catalog') .. 567</td>
</tr>
<tr>
<td>Wrap-up Chapters 10, 11: Review .. 586</td>
</tr>
<tr>
<td>Jargon and terms .. 587</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Appendix:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Equipment and Parts List .. 588</td>
</tr>
<tr>
<td>B Selected data sheets</td>
</tr>
<tr>
<td>2N5485 JFET .. 592</td>
</tr>
<tr>
<td>DG403 analog switch 593</td>
</tr>
<tr>
<td>74HC74 dual D FLIP-FLOP 595</td>
</tr>
<tr>
<td>AD7569 8-bit A/D, D/A 597</td>
</tr>
<tr>
<td>68008 execution times and timing diagram .. 600</td>
</tr>
<tr>
<td>25120 write-only memory 605</td>
</tr>
<tr>
<td>C Big Picture: Schematic of lab microcomputer .. 606</td>
</tr>
<tr>
<td>D Pinouts .. 608</td>
</tr>
</tbody>
</table>

| Index .. 612 |
Contents

Laboratory Exercises *(a more detailed listing)*

PART I: ANALOG LABS

Lab 1. DC Circuits
- Ohm’s law; A Nonlinear device; The diode; Voltage divider; Thevenin model;
 Oscilloscope; AC voltage divider

Lab 2. Capacitors
- RC circuit; Differentiator; Integrator; Low-pass filter; High-pass filter; Filter example
 I; Filter example II; Blocking capacitor; LC filter

Lab 3. Diodes
- LC resonant circuit; Confirming Fourier series; Half-wave rectifier; Full-wave bridge
 rectifier; Ripple; Signal diodes; Diode clamp; Diode limiter; Impedances of test
 instruments

Lab 4. Transistors I
- Transistor junctions are diodes; Emitter follower; Transistor current gain; Current
 source; Common emitter amplifier; Transistor switch

Lab 5. Transistors II
- Dynamic diode curve tracer; Grounded emitter amplifier; Current mirror; Ebers-Moll
 equation; Biasing: good & bad; Push-Pull

Lab 6. Transistors III
- Differential amplifier; Bootstrap; Miller effect; Darlington; Superbeta

Lab 7. Field Effect Transistors I
- FET characteristics; FET current sources; Source follower; FET as Voltage-
 controlled resistance; Amplitude modulation; ‘Radio broadcast’

Lab 8. Op Amps I
- Op-amp open-loop gain; Inverting amplifier; Non-inverting amplifier; Follower;
 Current source; Current-to-voltage converter; Summing amplifier; Push-pull
 buffer

Lab 9. Op Amps II
- Op-amp limitations; AC amplifier; Integrator; Differentiator; Active rectifier; Active
 clamp

Lab 10. Oscillators
- Comparator; Schmitt trigger; IC relaxation oscillator; Sawtooth wave oscillator;
 Voltage-controlled oscillator; Wien bridge sine oscillator; Unwanted oscillations:
 discrete follower & op amp stability problems

Lab 11. Field Effect Transistors II
- Analog switch characteristics; Applications: chopper circuit; sample-&-hold;
 switched-capacitor filters; negative voltage from positive

Lab 12. Power Supplies
- The 723 regulator; Three-terminal fixed regulator; Three-terminal adjustable
 regulator;
- Three-terminal regulator as current source; Voltage reference; ‘Crowbar’ clamp
Contents

PART II: DIGITAL LABS

Lab 13. Gates
- Logic probe; IC gates: TTL & CMOS; Logic functions with NANDs; Gate innards: TTL; CMOS: CMOS NOT, NAND, 3-state

Lab 14. Flip-Flops
- Latch; D flop; J-K flop; Ripple counter; Synchronous counter; Shift-register; Digitally-timed one-shot

Lab 15. Counters
- 8-bit counter; Cascading; Load from keypad; Programmable divide-by-n counter; Period meter; Capacitance meter

Lab 16. Memory; State Machines
- RAM; Divide-by-3 (your design); Memory-based state machines: Single-loop; External control added

Lab 17. A/D; Phase-Locked Loop: Two Digital Feedback Machines:
- D/A; A/D: Slow motion; Full speed; Displaying search tree; Speed limit; Latching output; Phase-Locked Loop: frequency multiplier.

Lab 18. µ1: Adding CPU
- Clock; CPU preliminary test; Fixing busgrant*; Memory enable logic; Memory write logic; Single-step; Test program; Full-speed: timing diagram

Lab 19. µ2: I/O: Output: First small programs
- Battery backup; Power-fail detector; I/O decoder; Data displays; Timing program

Lab 20. µ3: Input; More small programs
- Delay as subroutine; Improved delay routines; Input hardware: Data input hardware; Input/output program; Ready signal; I/O program with enter/ready function; Decimal arithmetic

Lab 21. µ4: A/D ↔ D/A
- A/D-D/A wiring details; Programs: confirming that D/A, A/D work; In & Out; Invert, rectify, low-pass;

Lab 22. µ5: ‘Storage scope;’ Interrupts & other ‘Exceptions’
- ‘Storage scope;’ keyboard control;
 Exceptions: A software exception: illegal; Interrupt: hardware to request interrupt;
 Program: main & service routine; NMI; Applying interrupts

Register-Check: a debugging aid (optional program; install if you choose to)

Lab 23. Applying Your Microcomputer (‘Toy Catalog’)
- X-Y scope displays; Light-pen; Voice output; Driving a stepper motor; Games;
 Sound sampling/generation