Student Manual
for
The Art of Electronics

Thomas C. Hayes
Paul Horowitz

Harvard University
TO TURNER, TESSA AND DEBBIE; TO MISHA, JACOB AND CAROL

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa
http://www.cambridge.org

© Cambridge University Press 1989

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 1989

Printed in the United States of America

Typeset in Times

A catalog record for this book is available from the British Library

Library of Congress Cataloging in Publication data is available

ISBN 0 521 37709 9 paperback
Contents

ANALOG

Chapter 1: Foundations
Overview: Chapter 1 ... 1
Class 1: DC Circuits ... 3
 Worked example: Resistors & instruments 15
Lab 1: DC circuits ... 24

Class 2: Capacitors & RC Circuits 32
 Worked example: RC circuits 46
 A Note on reading capacitor values 51
Lab 2: Capacitors ... 54

Class 3: Diode Circuits 61
 Worked example: Power supply 71
Lab 3: Diode circuits 75
 Wrap-up: Ch. 1: Review 80
 Jargon and terms 81

Chapter 2: Transistors (bipolar)
Overview: Chapters 2 & 3 82
Class 4: Transistors I: First Model 84
 Worked example: Emitter follower 90
Lab 4: Transistors I .. 94

Class 5: Transistors II: Corrections to the first
 model: Ebers-Moll: r_e; applying this new
 view .. 100
 Worked example: Common-emitter amplifier
 (bypassed emitter) 115
Lab 5: Transistors II .. 118

Class 6: Transistors III: Differential amplifier;
 Miller effect .. 124
 Worked example: Differential amplifier 131
Lab 6: Transistors III 134
 Wrap-up Ch. 2: Review 139
 Jargon and terms ... 140

Chapter 3: Field Effect Transistors
Class 7: FETs I (linear applications) 142
 Worked example: Current source, source
 follower .. 153
Lab 7: FETs I (linear) 156
 (We return to FETs in Lab 11)

Chapter 4: Feedback and Operational Amplifiers
Overview: Feedback: Chapters 4, 5 & 6 163
Class 8: Op Amps I: Idealized view 166
 Worked Example: Inverting amplifier; summing
 circuit ... 175
Lab 8: Op amps I .. 175

Class 9: Op Amps II: Departures from ideal 184
 Worked example: Integrators; effects of op amp
 errors .. 196
Lab 9: Op amps II ... 200

Chapter 4 (continued); Chapter 5
Active Filters & Oscillators
Class 10: Op Amps III: Positive Feedback, Good
 and Bad: comparators, oscillators, and unstable
 circuits; a quantitative view of the effects of
 negative feedback 207
 Appendix: Notes on op amp frequency
 compensation ... 222
 Worked example: Effects of feedback
 (quantitative) .. 224
 Schmitt trigger 227
 Op Amp Innards: Annotated
 schematic of the LF411 232
 Lab 10: Positive feedback, good and bad 233
 Wrap-up Chs. 4 & 5: Review 242
 Jargon and terms ... 243

Chapter 3: Field Effect Transistors
(revisited)
Class 11: FETs II: Switches (power switching and
 analog switch applications) 244
 Worked example: Sample and hold 250
Lab 11: FET switches 255
 Wrap-up Ch. 3: Review 264
 Jargon and terms ... 265

Chapter 6: Voltage Regulators and Power Circuits
Class 12: Voltage Regulators 267
Lab 12: Voltage regulators 274
 Wrap-up Ch. 6: Jargon and terms 280
(This course omits the Text's Chapter 7: Precision Circuits & Low-Noise Techniques)

DIGITAL

Chapter 8: Digital Electronics
Overview: Chapters 8 & 9 ... 281
Class 13: Digital Gates; Combinational Logic ... 281
 Worked example: Multiplexers 283
 Binary arithmetic ... 295
Lab 13: Digital gates ... 309
Class 14: Sequential Circuits: Flip-Flops 320
 Worked example: combinational logic 332
Lab 14: Flip-flops .. 334

Class 15: Counters .. 342
 Worked example: counter applications 351
Lab 15: Counters .. 362
Class 16: Memory; Buses; State Machines 375
 Worked example: state machines 384
Lab 16: Memory; State Machines 394
 Wrap-up Ch. 8: Review 403
 Jargon and terms 404

Chapter 9: Digital Meets Analog
Class 17: Analog <-> Digital;
 Phase-Locked Loop 406
Lab 17: Analog <-> Digital;
 Phase-Locked Loop 421
 Wrap-up Ch. 9: Review 430
 Jargon and terms 430

Chapters 10, 11: Microcomputers;
Microprocessors
Overview: Chapters 10 & 11 431
Class 18: µ1: IBM PC and our lab
 microcomputer ... 433
 Worked example: minimal 68008 controller 441
Lab 18: Add CPU .. 443

Class 19: Assembly Language; Inside the CPU; I/O
 Decoding ... 455
 Supplementary notes: introduction to assembly
 language .. 467
Lab 19: µ2: I/O ... 471

Class 20: µ3: A/D <-> D/A Interfacing; Masks;
 Data tables ... 479
Lab 20: Subroutines; More I/O Programming 489

Class 21: µ4: More Assembly-Language
 Programming; 12-bit port 498
 Worked example: 10 tiny programs 503
 Worked Example: 12-bit frequency counter 518
 Hand assembly: table of codes 521
Lab 21: A/D, D/A, Data Handling 525

Class 22: µ5: Interrupts & Other 'Exceptions' 535
 Debugging aid: Register Check in two forms 541
Lab 22: 'Storage scope'; Interrupts & other
 'exceptions' ... 548

Class 23: µ6: Wrap-up: Buying and Building 562
Lab 23: Applying your microcomputer ('Toy
 Catalog') ... 567
 Wrap-up Chapters 10, 11:
 Review ... 586
 Jargon and terms 587

Appendix:
A Equipment and Parts List 588
B Selected data sheets
 2N5485 JFET ... 592
 DG403 analog switch 593
 74HC74 dual D FLIP-FLOP 595
 AD7569 8-bit A/D, D/A 597
 68008 execution times and timing diagram 600
 25120 write-only memory 605
C Big Picture: Schematic of lab
 microcomputer ... 606
D Pinouts ... 608

Index .. 612
Contents

Laboratory Exercises *(a more detailed listing)*

PART I: ANALOG LABS

Lab 1. **DC Circuits**
- Ohm’s law; A Nonlinear device; The diode; Voltage divider; Thevenin model; Oscilloscope; AC voltage divider

Lab 2. **Capacitors**
- RC circuit; Differentiator; Integrator; Low-pass filter; High-pass filter; Filter example I; Filter example II;Blocking capacitor; LC filter

Lab 3. **Diodes**
- LC resonant circuit; Confirming Fourier series; Half-wave rectifier; Full-wave bridge rectifier; Ripple; Signal diodes; Diode clamp; Diode limiter; Impedances of test instruments

Lab 4. **Transistors I**
- Transistor junctions are diodes; Emitter follower; Transistor current gain; Current source; Common emitter amplifier; Transistor switch

Lab 5. **Transistors II**
- Dynamic diode curve tracer; Grounded emitter amplifier; Current mirror; Ebers-Moll equation; Biasing: good & bad; Push-Pull

Lab 6. **Transistors III**
- Differential amplifier; Bootstrap; Miller effect; Darlington; Superbeta

Lab 7. **Field Effect Transistors I**
- FET characteristics; FET current sources; Source follower; FET as Voltage-controlled resistance; Amplitude modulation; ‘Radio broadcast’

Lab 8. **Op Amps I**
- Op-amp open-loop gain; Inverting amplifier; Non-inverting amplifier; Follower; Current source; Current-to-voltage converter; Summing amplifier; Push-pull buffer

Lab 9. **Op Amps II**
- Op-amp limitations; AC amplifier; Integrator; Differentiator; Active rectifier; Active clamp

Lab 10. **Oscillators**
- Comparator; Schmitt trigger; IC relaxation oscillator; Sawtooth wave oscillator; Voltage-controlled oscillator; Wien bridge sine oscillator; Unwanted oscillations: discrete follower & op amp stability problems

Lab 11. **Field Effect Transistors II**
- Analog switch characteristics; Applications: chopper circuit; sample-&-hold; switched-capacitor filters; negative voltage from positive

Lab 12. **Power Supplies**
- The 723 regulator; Three-terminal fixed regulator; Three-terminal adjustable regulator;
- Three-terminal regulator as current source; Voltage reference; ‘Crowbar’ clamp
Contents

PART II: DIGITAL LABS

Lab 13. **Gates**
Logic probe; IC gates: TTL & CMOS; Logic functions with NANDs; Gate innards: TTL; CMOS: CMOS NOT, NAND, 3-state

Lab 14. **Flip-Flops**
Latch; D flop; J-K flop; Ripple counter; Synchronous counter; Shift-register; Digitally-timed one-shot

Lab 15. **Counters**
8-bit counter; Cascading; Load from keypad; Programmable divide-by-n counter; Period meter; Capacitance meter

Lab 16. **Memory; State Machines**
RAM; Divide-by-3 (your design); Memory-based state machines: Single-loop; External control added

Lab 17. **A/D; Phase-Locked Loop: Two Digital Feedback Machines:**
D/A; A/D: Slow motion; Full speed; Displaying search tree; Speed limit; Latching output; Phase-Locked Loop: frequency multiplier.

Lab 18. **μ1: Adding CPU**
Clock; CPU preliminary test; Fixing busgrant*; Memory enable logic; Memory write logic; Single-step; Test program; Full-speed: timing diagram

Lab 19. **μ2: I/O: First small programs**
Battery backup; Power-fail detector; I/O decoder; Data displays; Timing program

Lab 20. **μ3: Input; More small programs**
Delay as subroutine; Improved delay routines; Input hardware: Data input hardware; Input/output program; Ready signal; I/O program with enter/ready function; Decimal arithmetic

Lab 21. **μ4: A/D ↔ D/A**
A/D-D/A wiring details; Programs: confirming that D/A, A/D work; In & Out; Invert, rectify, low-pass;

Lab 22. **μ5: ‘Storage scope,’ Interrupts & other ‘Exceptions’**
‘Storage scope,’ keyboard control;
Exceptions: A software exception: illegal; Interrupt: hardware to request interrupt;
Program: main & service routine; NMI; Applying interrupts

Register-Check: a debugging aid (optional program; install if you choose to)

Lab 23. **Applying Your Microcomputer (‘Toy Catalog’)**
X-Y scope displays; Light-pen; Voice output; Driving a stepper motor; Games; Sound sampling/generation
PREFACE

This manual is intended to be used along with The Art of Electronics by Horowitz and Hill (Cambridge University Press, New York, 2d ed. 1989) in an introductory electronics course. The manual includes three principal elements:

- laboratory exercises: 23 of these, each meant to occupy a 3-hour lab period; each set of laboratory notes except the last includes a reading assignment in the Text;
- explanatory notes: one for each laboratory exercise or class;
- worked examples: a total of 20: approximately one for each reading assignment.

In addition, we have included some reference materials:

- a glossary of frequently-used terms and jargon;
- review notes for each chapter, noting the most important circuits and topics;
- selected data sheets, analog and digital.

The students this course might suit

These notes arose out of a course at Harvard; they define what we try to teach in that busy term. The course does less than all of Horowitz and Hill, of course. We treat chapters 1-11, omitting Chapter 7, on Precision Circuits..., which is more specialized than the rest, and skimming Chapter 4 on Active Filters and Oscillators. Even this selection includes more information than we expect students to absorb fully on a first pass through the book. This Manual tries to guide students to the most important material.

The typical student that we see—if there really is a typical student—is an undergraduate majoring in Physics, and wanting to learn enough electronics to let him or her do useful work in a laboratory. But we do not assume such background in these notes. Students very different from that typical student thrive in our course. Graduate students in the sciences appear regularly; during the summer we see many high school students, and some of these do brilliantly; now and then a professor of Physics takes the course (and they do all right, too!). In the ‘extension’ version of the course, we see lots of programmers who want to know what’s going on in their machines, and we see people who just happen to be curious about electronics. That curiosity, in fact, is the only prerequisite for this course, and suggests the only good rule to define who will enjoy it. Someone looking for an engineering course will find our treatment oddly informal, but a person eager to learn how to design useful circuits will like this course.

Laboratory Exercises

The laboratory exercises build upon a set of labs that were set out in the 1981 edition of the Laboratory Manual, by Horowitz and Robinson. The new exercises replace all of the original digital labs and substantially revise the analog labs on FET’s and oscillators. In the digital section we have switched over from LSTTL to HCMOS, but the major change has been the enlarged role given to the microprocessor labs, and the shift from the Z80 processor programmed rather laboriously via a DIP switch to a 68008 processor programmed through a keypad. (A complete schematic is included. See Lab 15. Complete keypad units are available through the authors. See Parts list).

We have held to our intention that students should build their computer from the chip level, and that they should not be handed a ROM cleverly programmed by someone else.
We want our students to feel that they know their computer intimately, and that it is fully their product.

The digital half of the course now centers on the microcomputer: we meet simpler digital devices—gates, flip-flops, counters, memory—partly because we want to be able to build small digital circuits, but also partly in order to understand the full microcomputer circuit. To put this point another way, the final series of labs, in which the microcomputer gradually takes form, draws together every one of the several circuit elements met earlier: combinational logic networks, flip-flop circuits, counters, memory, and analog/digital conversion. The A-D conversion experiments have been expanded to include the effects of sampling-rate and of filters applied to input and output.

Notes

The notes that introduce each lab respond to two needs that students often voice:

- The notes select a few points from the much broader coverage of the Text; those selected points are, of course, those that we think most important to a student meeting practical electronics for the first time.
- The notes explain at length. They do this at a level more basic than the Text’s, and they provide explanations in a step-by-step style that the Text cannot afford, given its need to cover far more material.

A suggestion: how to use the notes

Here’s a proposal; you will, of course, find your own way to use Text, Notes and all the other course materials. But here is one way to begin.

- Start by reading the day’s assignment in the Text. It will include some material that is subtler than what we expect you to pick up in a first course. You may want to hear some points restated in another way, or you may want to see an example worked. Primed with this specific sort of curiosity, you might then—
- Look at the day’s Notes and Lab: scan, first, to see which circuits and which points are selected. Read the Notes on any points that puzzled you; if you still are puzzled, return to the Text for a second look at the topics you now know are most important.
- Skip topics in the Notes that you understand already. The Notes are meant to help you, not to burden you with additional reading: if you have read and understood the Text’s discussion of a topic, you will miss nothing by omitting the corresponding section in the Notes.
- Try the day’s worked example, at least in your head. If it looks easy, you may want to skip it. If it looks hard, probably you should try to do your own solution. If you find yourself heading into a lot of work—especially any involved calculations—probably you are doing unnecessary labor, and it is time to peek at our solution. We hope to teach you an approach to problems of circuit design, not just a set of particular rules. If there is a laborious way and a quick way to reach a good design, we want to push you firmly toward the quick way.

We expect that some of these notes will strike you as babyish, some as excessively dense: your reaction naturally reflects the uneven experience you have had with the topics the Text and Manual treat. Some of you are sophisticated programmers, and will sail through the assembly-language programming near the course’s end; others will find it heavy going.
That’s all right. The course out of which this Manual grew—and, earlier, the Text as well—has a reputation as fun, and not difficult in one sense, but difficult in another: the concepts are straightforward; abstractions are few. But we do pass a lot of information to our students in a short time; we do expect them to achieve literacy rather fast. This course is a lot like an introductory language course, and we hope to teach by the method sometimes called immersion. It is the laboratory exercises that do the best teaching; we hope the Text and this Manual will help to make those exercises instructive.

Why our figures and text look the way they do

You will discover very quickly that this manual is informal in language and layout. The figures all are hand-drawn. They are done by hand partly because we like the look of hand-drawn figures (when they are done right; not all our figures are pretty), and partly because we want to encourage students to do their own free-hand drafting of schematics. In some cases we did draft drawings on a computer, then drew the final versions by hand! The text was produced as camera-ready copy, put out by an ordinary PC word processor. So—as writers used to say, long ago—dear reader, look with sympathy, if you can, when you find a typo, or a figure drawn amiss. Don’t blame the publisher for corporate sloth. Picture, instead, two fellows hunched over their keyboard and drawing board, late at night and beginning to get drowsy.

Who helped especially with this book

Two teaching fellows gave us good advice on uncounted occasions: Shahn Majid, a mathematical Physicist who taught with us for years in the Harvard College course, and Steve Morss, a digital engineer who once took the course and then returned to teach. Steve often would linger late into the night helping to try out a new circuit or analyze an old one. Both of these two could perfectly well have taught the course, and chose nevertheless to linger—Bodhisattva-like—giving their expert help in this quieter way.

A pair of our former students, Jeff Hobson and Wei-Jing Zhu, helped us first by drawing figures—and then gradually turned into this book’s godparents, helping in all sorts of ways. Often they would arrive in the evening, at the end of a long day’s work, and then would labor to help us organize, check, re-check—and also to make judgments on how to make our points clearly. Often the end of the workday was defined by the departure of the last bus, at 1:00 in the morning. Their devotion to the project was invaluable, and touching.

Finally, Debbie Mills deserves thanks for putting up with her husband Tom’s strange, long hours, and then, toward the end, doing much more: providing essential help in organizing, checking, and correcting the growing stacks of printouts and drawings.

Tom Hayes
Paul Horowitz

Cambridge, Mass.
July 1989