Index

ABCD parameters, 511, 515
a.c. bridge, 132–6
active element, 3
active power, 187
admittance, 123–6
complex, 116, 123
driving point, 504
generalized, 348, 361–3
transfer, 504
admittance matrix, 513
admittance parameters, 508
alternating quantity, 2, 99
ammeter, 251
ampere, 6
amplifier, 78, 510
amplitude of a.c. waveform, 99
amplitude
response, 367
spectrum, 474
angular frequency, 99
Argand diagram, 106
argument of complex number, 105
asymmetrical network, 87
attenuator, 45, 534
autotransformer, 214–17
auxiliary equation, 288
average power, 187
balanced network, 87, 502
band-pass characteristic, 157, 177
bandwidth, 155
battery model, 43
bias point, 426
bilateral element, 418
Bode diagram, 130
branch, 43
break frequency, 131
break point, 429
bridge circuits, 61, 72, 132–40, 221
Butterworth filter, 372
capacitance, 2, 13, 103
stored energy in, 24
capacitances
in parallel, 26
in series, 24
capacitive circuit
reactance, 103
susceptance, 125
capacitors
loss-angle in, 150
losses in, 149
model for, 36
Cartesian coordinates, 106
cascaded networks, 518, 530
chain matrix, 518–25
characteristic impedance, 532
characteristics (of device), 419–25
charge, 5
circle diagram, 129
circuit
active, 3
distributed, 3
dual, 37, 164
lumped model, 3
passive, 3, 44
circuit reduction, 84
coefficient of coupling, 33, 175
coil, 26
compensation theorem, 82
complementary function, 285
Index

complex
algebra, 106
conjugate, 198
exponential, 107
frequency, 348, 369
impedance, 110
plane, 106, 108, 361
power, 198
quantity, 105
conductance, 19, 69, 124
conduction angle, 20, 452
cconductivity, 20
conjugate bridge, 133
conservation
of charge, 13
of energy, 9, 13
of watts and vars, 194
controlled source, 33, 75, 507
convolution, 392–405
integral, 396
theorem, 401
copper loss, 21, 213
corner frequency, 131
corresponding ends (of coil), 32, 142
coulomb, 6
coupled coils, 141, 301
coupling coefficient, 33, 175
coupling network, 127
Cramer’s rule, 54
critical damping, 294
critical coupling, 174–6
current
alternating, 2, 98–101
direct, 2
current convention, 7
current divider, 45, 165
current source, 11, 117
d–impedance, 309
d–operator, 304
damped natural frequency, 294
damped sinusoid, 293
damping, 294, 362–4
damping constant, 294
decibel, 130
delay time, 312
delayed function, 326
delta circuit, 66
delta function, 319
dependent source, 75
determinant, 54
differential operator, 309
differentiating circuit, 316
diode
ideal, 429
real, 437
zener, 437
Dirac function, 319
discontinuous function, 317
discriminant, 293
divider, 45, 350
dot convention, 32, 142
double-energy circuit, 291
doublet (unit), 325
driving point impedance, 143, 505
duality, 37
dual networks, 45, 67, 164
dynamic resistance, 426
of resonant circuit, 166
dynamometer, 251
effective resistance, 146
effective value of sinusoid, 100
electrical angle, 100
electrodynamometer, 251
electrokinetic momentum, 347
eletromotive force (e.m.f.), 1, 27
element
active, 3
bilateral, 418
ideal, 36
lumped, 3
non-linear, 418
passive, 3, 36
energy
initial, 281, 291
sink, 1, 9
source, 1, 9
storage in elements, 2, 24, 28
equivalent circuits
for capacitor, 149
for inductor, 147
series–parallel, 21
star–delta, 66
Euler’s identity, 105
even function, 466
excitation function, 349
exciting current, 202, 205
exponential Fourier series, 471
farad, 23
Faraday’s law, 31
field, 1
filters
for rectifiers, 482–6
high-pass, 127
Index

low-pass, 372
notch, 140
twin-T, 136, 528
final value theorem, 358
first-order circuit, 291
flux
density \((B)\), 203
leakage, 202
magnetic, 26, 202
mutual, 31
forced response, 285
form factor, 101
Foster’s reactance theorem, 173
Fourier series
coefficients, 460
cosine, 466
exponential, 471
for rectifier, 469
sine, 466
frequency
angular, 99
complex, 348
half-power, 155
natural, 294
negative, 472
response, 126
spectrum, 466
undamped, 294
frequency changer, 445
function
network, 349
rational, 334
transfer, 126
generalized network function, 349
Gibbs phenomena, 465
\(g\)-parameters, 507
gyrator, 524
half-power bandwidth, 155
harmonic components, 461
henry, 27
hertz, 99
hybrid parameters, 506
hysteresis loss, 203
ideal source, 11
ideal transformer, 199, 522
image impedance, 531
immittance, 348
impedance
complex, 110
575
D-operator, 309
driving point, 143, 504
dynamic, 166
generalized, 348
input, 143
modulus of, 110
transfer, 505
impedance diagram, 115
impedance matrix, 513
impedance transformation, 200
impulse
function, 317, 319
response, 320, 351
train, 392
incremental (slope) resistance, 426
independent parameters, 502
induced e.m.f., 27
inductance, 2, 26, 102
leakage, 207
mutual, 31, 35, 141
self, 26, 27
stored energy in, 28
inductances
in parallel, 29
in series, 30
inductive reactance, 103
inductor
losses in, 146
model for, 36
initial conditions, 281, 289
initial value theorem, 358
in-phase component, 192
insertion loss, 536
integrating circuit, 316
inverse matrix, 515
inverse transform, 328
iron loss, 203
iterative impedance, 530
joule, 8
j-operator, 106
Kirchhoff’s laws, 13–18, 419
current, 13
voltage, 16
ladder method, 87, 372
ladder network, 87
Laplace transform, 328
of delayed functions, 358
of derivative, 330
of integral, 331
lattice network, 72, 521
Index

576

leakage inductance, 207
linear element, 3, 418
linearity, 57
line spectra, 475
load line, 423
locus diagram, 129
logarithmic decrement, 295
loop, 44
loop equations, 48, 52
loss-angle (of capacitor), 150
low-pass filter, 372
lumped element, 3
magnetizing current, 203
magnetizing force (H), 203
magnitude (of a.c. waveform), 100
mark-space ratio, 376
matching, 201, 218–21
maximum power transfer, 217
Maxwell’s cyclic currents, 49
mesh, 44
mesh analysis, 47–50, 52, 71, 545
Millman’s theorem, 86
mistuning, 160
modulator, 445
multiple resonance, 169–73
mutual conductance, 69, 70
mutual inductance, 31, 35, 141, 175, 344
mutual resistance, 48, 53
natural response, 285
negative impedance converter, 524
network, 44
network function, 349
nodal analysis, 67–70, 71, 125
nodal equations, 69
node, 13, 43
non-linear elements, 3, 418
Norton’s theorem 64
Nyquist diagram, 129
Odd function, 466
ohm, 19
Ohm’s law, 18, 112
open-circuit impedance, 505
open-circuit test, 209
operating point, 425
operational amplifier, 78, 510
oscillatory response, 293, 363
output resistance, 43, 80
overdamped circuit, 294, 362
parabola (unit), 325
parallel resonant circuit, 164
Parseval’s theorem, 478
partial fractions, 334–9
particular integral, 285
passive circuit, 3
peak inverse voltage, 450
period, 99
periodicity theorem, 382
phase angle, 99
phase response, 239, 367
phase sequence, 246
phase sensitive detector, 447
phase transformation, 270
phasor
cartesian form, 105
diagram, 113, 118
polar form, 106
rotating, 107
stationary, 108
pi-network, 516
piecewise-linear circuits, 428–43
poles
of admittance, 362
of impedance, 172
of network function, 360
repeated, 362
pole-zero methods, 359–72
pole-zero diagram, 361
port, 44
potential difference (p.d.), 7
potentiometer, 46
power
active and reactive, 187, 190
apparent, 191
average, 187–8
complex, 198
diagram, 249
in harmonic components, 478
instantaneous, 8, 188, 273
real, 187, 188
sign convention, 9, 188
triangle, 191
power factor, 150, 194
power factor correction, 194, 249
practical voltage source, 42
pulse
repeated, 376
transform of, 381
quadrature component, 192
quasi-steady state, 377
Index

Q-factor,
of capacitor, 150
of inductor, 147
of resonant circuit, 165, 169, 253, 294

radian, 99
ramp function, 325
rational function, 334
rationalization, 124
reactance, 103, 110
reactive power, 190
reciprocal network, 505
reciprocity theorem, 58, 546
rectifier circuits, 448
bridge, 453
full-wave, 453
half-wave, 448
ripple in, 482
regulation (of transformer), 211
resistance, 2, 18, 101
resistances
in parallel, 22
in series, 21
resistivity, 20
resistor
model for, 36
non-linear, 445
resonance, 146, 158
resonance curve, 162
resonant circuits
inductively coupled, 173
losses in, 151
magnification factor in, 157, 165
parallel, 164
series, 151
resonant frequency, 153, 158
response function, 349
root mean square (r.m.s.) value, 101, 189, 478
roots (of polynomial), 354
Rosen’s theorem, 67

s (complex frequency), 348
domain, 340
plane, 361
sampling, 394
Schering bridge, 133
Scott connection, 271
second-order circuit, 291
self inductance, 26
shift theorem, 357
short-circuit test, 210
siemens, 19, 124
sifting property, 394
single-energy circuit, 291
singularity function, 317–27
sink, 9
skin effect, 146
small-signal model, 426
source,
controlled, 33, 75, 507
current, 12, 64
dependent, 33, 75, 507
ideal, 11
practical, 42, 64
transformation, 64
voltage, 11, 64
spectrum, 474
stagger tuning, 177
star connection, 66, 239
star–delta transformation, 66, 86
steady state, 280
steady-state response, 285, 377
step function, 318
step response, 319
substitution theorem, 81
superposition theorem, 55, 546
susceptance, 124
symmetrical circuits, 87, 502
tee network, 516
Tee-pi transformation, 67, 138, 516
Téllegen’s theorem, 194
Thévenin’s theorem, 58, 313, 547
Thévenin–Norton transformation, 64, 117
third-harmonic current, 269
two-phase circuit, 233
balanced load in, 236
delta connection in, 239
line voltage in, 235
neutral point in, 235
phase sequence in, 239, 246
phase voltage in, 235
star connection in, 239
unbalanced load in, 245
Y-connection in, 239
thyristor, 455
time constant, 286
time domain, 340
total response, 295
transfer characteristic, 423
transfer function, 126, 349
<table>
<thead>
<tr>
<th>Page</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>578</td>
<td>Index</td>
</tr>
<tr>
<td></td>
<td>transfer impedance, 505</td>
</tr>
<tr>
<td></td>
<td>transformer</td>
</tr>
<tr>
<td></td>
<td>auto, 214</td>
</tr>
<tr>
<td></td>
<td>copper loss in, 213</td>
</tr>
<tr>
<td></td>
<td>core loss in, 203, 213</td>
</tr>
<tr>
<td></td>
<td>efficiency in, 213</td>
</tr>
<tr>
<td></td>
<td>equivalent circuit, 261</td>
</tr>
<tr>
<td></td>
<td>ideal, 199</td>
</tr>
<tr>
<td></td>
<td>regulation in, 211</td>
</tr>
<tr>
<td></td>
<td>single-phase, 201</td>
</tr>
<tr>
<td></td>
<td>tests, 209, 261</td>
</tr>
<tr>
<td></td>
<td>third harmonic currents in, 269</td>
</tr>
<tr>
<td></td>
<td>three-phase, 258</td>
</tr>
<tr>
<td></td>
<td>transformer bridge, 221</td>
</tr>
<tr>
<td></td>
<td>transient response, 282, 285</td>
</tr>
<tr>
<td></td>
<td>transistor, 423</td>
</tr>
<tr>
<td></td>
<td>model, 426, 427, 509</td>
</tr>
<tr>
<td></td>
<td>parameters, 503</td>
</tr>
<tr>
<td></td>
<td>transmission parameters, 511</td>
</tr>
<tr>
<td></td>
<td>triac, 459</td>
</tr>
<tr>
<td></td>
<td>triangular pulse, 383</td>
</tr>
<tr>
<td></td>
<td>tuning, 157</td>
</tr>
<tr>
<td></td>
<td>turnover frequency, 131</td>
</tr>
<tr>
<td></td>
<td>twin-T network, 136, 528</td>
</tr>
<tr>
<td></td>
<td>two-phase voltages, 271</td>
</tr>
<tr>
<td></td>
<td>two-port network, 126, 501</td>
</tr>
<tr>
<td></td>
<td>two-wattmeter method, 253</td>
</tr>
<tr>
<td></td>
<td>unbalanced network, 87</td>
</tr>
<tr>
<td></td>
<td>underdamped circuit, 294, 362</td>
</tr>
<tr>
<td></td>
<td>universal resonance curve, 161</td>
</tr>
<tr>
<td></td>
<td>unsymmetrical network, 503</td>
</tr>
<tr>
<td></td>
<td>var, 191</td>
</tr>
<tr>
<td></td>
<td>volt, 7</td>
</tr>
<tr>
<td></td>
<td>volt-ampere, 191</td>
</tr>
<tr>
<td></td>
<td>voltage divider, 44, 350</td>
</tr>
<tr>
<td></td>
<td>voltage source</td>
</tr>
<tr>
<td></td>
<td>ideal, 11</td>
</tr>
<tr>
<td></td>
<td>practical, 42, 64</td>
</tr>
<tr>
<td></td>
<td>watt, 8</td>
</tr>
<tr>
<td></td>
<td>wattmeter, 251</td>
</tr>
<tr>
<td></td>
<td>waveform</td>
</tr>
<tr>
<td></td>
<td>rectified sine, 304, 469–71</td>
</tr>
<tr>
<td></td>
<td>sawtooth, 384</td>
</tr>
<tr>
<td></td>
<td>square, 381, 463–6</td>
</tr>
<tr>
<td></td>
<td>trapezoidal, 499</td>
</tr>
<tr>
<td></td>
<td>triangular, 383, 466–8</td>
</tr>
<tr>
<td></td>
<td>TV video, 390</td>
</tr>
<tr>
<td></td>
<td>Wheatstone bridge, 61, 72</td>
</tr>
<tr>
<td></td>
<td>Wien bridge, 135</td>
</tr>
<tr>
<td></td>
<td>Y–Δ transformation, 66, 244</td>
</tr>
<tr>
<td></td>
<td>y-parameters, 503</td>
</tr>
<tr>
<td></td>
<td>zeros of network function, 172, 360</td>
</tr>
<tr>
<td></td>
<td>z-parameters, 505</td>
</tr>
</tbody>
</table>