INFORMATION SYSTEMS DEVELOPMENT
AND DATA MODELING
Conceptual and Philosophical Foundations
Table of Contents

Preface

xi

Acknowledgements

xiii

1 **Introduction**

1

1.1 Background

1

1.2 Purpose of the Book

3

1.3 Goals and Organization of the Book

5

2 **Definition and Evolution of Information Systems Development Methodologies and Data Modeling**

10

2.1 Introduction

10

2.2 Basic Terminology

12

2.2.1 Introductory Concepts and Terms

12

2.2.1.1 Codes and Data

12

2.2.1.2 Meaning vs. Invariances

13

2.2.1.3 Data vs. Information and Knowledge

14

2.2.1.4 Knowledge vs. Wisdom

15

2.2.2 Basic Terminology for IS

15

2.2.2.1 Definition of Information Systems Development as Object System Change

15

2.2.2.2 Definition of Information Systems Development Methodology

21

2.2.3 Definition of Data Modeling

26

2.3 Seven Generations of ISD Methodologies

28

2.3.1 Background

28

2.3.2 Pre-Methodology Era

29

2.3.3 First Generation: The Emergence of Formal Life-cycle Approaches

30

2.3.4 Second Generation: The Emergence of the Structured Approaches

33

2.3.5 Third Generation: The Emergence of Prototyping and Evolutionary Approaches

34
Table of Contents

vi

2.3.6 Fourth Generation: The Emergence of Socio-technical, Participative Approaches 36

2.3.7 Fifth Generation: The Emergence of Sense-making and Problem Formulation Approaches 37

2.3.8 Sixth Generation: The Emergence of the Trade-union led Approaches 38

2.3.9 Seventh Generation: The Emergence of Emancipatory Approaches 39

2.4 Evolution of Data Modeling 40

2.4.1 Pre-database Architecture: From the Phoenicians to File Organization 40

2.4.2 The Emergence and Evolution of Advanced Database Architectures 42

2.4.2.1 Two Level Database Architectures 42

2.4.2.2 The ANSI/X3/SPARC Three Level Architecture 42

2.4.3 Proliferation of High Level Data Models 44

2.5 Summary and Conclusions 45

3 Philosophical Foundations 46

3.1 Introduction 46

3.2 Definition of Paradigms 46

3.2.1 Epistemological and Ontological Assumptions of Paradigms 47

3.2.2 Classification of Four Paradigms 48

3.3 Paradigms in ISD 49

3.3.1 Differences Relating to Human Interests 51

3.3.2 Differences in Ontology 54

3.3.3 Differences Related to User Control and the Kind of System Produced 54

3.4 Data Modeling Paradigms 57

3.4.1 Ontology and Epistemology of Data Modeling 58

3.4.2 Philosophical Origins of Data Modeling Paradigms 60

3.4.3 Objectivism–Subjectivism in Data Modeling 61

3.5 Paradigmatic Implications for Object Systems Definition 63

3.5.1 Object Systems in Functionalism 63

3.5.2 Object Systems in Radical Structuralism 65

3.5.3 Object Systems in Social Relativism 66

3.5.4 Object Systems in Neohumanism 66
Table of Contents

3.6 Summary and Conclusions 67

4 Conceptual and Paradigmatic Foundations of ISD 68
4.1 Introduction 68
4.2 Paradigms of Information Systems Development 68
 4.2.1 Paradigmatic Assumptions of Functionalist ISD 69
 4.2.1.1 General Description 69
 4.2.1.2 Interpretation 70
 4.2.1.3 Analysis and Discussion 71
 4.2.2 Paradigmatic Assumptions of Social Relativist ISD 73
 4.2.2.1 General Description 73
 4.2.2.2 Interpretation 74
 4.2.2.3 Analysis and Discussion 75
 4.2.3 Paradigmatic Assumptions of Radical Structuralist ISD 76
 4.2.3.1 General Description 76
 4.2.3.2 Interpretation 78
 4.2.3.3 Analysis and Discussion 79
 4.2.4 Paradigmatic Assumptions of Neohumanist ISD 80
 4.2.4.1 General Description 80
 4.2.4.2 Interpretation 88
 4.2.4.3 Analysis and Discussion 89
4.3 Paradigms and the Evolution of Methodologies 92
 4.3.1 An Approach to Paradigmatic Placement of Methodologies 92
 4.3.2 The Relationship between Paradigms and Generations of ISD Methodologies 95
4.4 Summary and Conclusions 98

5 Paradigmatic Analysis of ISD Methodologies 99
5.1 Introduction 99
5.2 Selection of Approaches and Plan of Analysis 99
5.3 Information Systems Planning and Structured Approaches 102
 5.3.1 Problem Focus and Overview 103
 5.3.2 Paradigmatic Analysis of Strengths 107
 5.3.3 Paradigmatic Analysis of Weaknesses 107
 5.3.4 Suggested Directions for Future Improvements 110

© Cambridge University Press
www.cambridge.org
vi

5.4 Prototyping and Evolutionary Systems Development 115
5.4.1 Problem Focus and Overview 115
5.4.2 Paradigmatic Analysis of Strengths 119
5.4.3 Paradigmatic Analysis of Weaknesses 122
5.4.4 Suggested Directions for Future Improvements 123

5.5 Soft Systems Methodology 124
5.5.1 Problem Focus and Overview 124
5.5.2 Paradigmatic Analysis of Strengths 125
5.5.3 Paradigmatic Analysis of Weaknesses 126
5.5.4 Suggested Directions for Future Improvements 127

5.6 Professional Work Practices Approach 128
5.6.1 Problem Focus and Overview 129
5.6.2 Paradigmatic Analysis of Strengths 132
5.6.3 Paradigmatic Analysis of Weaknesses 134
5.6.4 Suggestions Directions for Future Improvements 137

5.7 Summary of Methodology Analysis 138
5.7.1 Methodology Summary 138
5.7.2 Comparative Methodology Review 139

6 Conceptual and Paradigmatic Foundations of Data Modeling 144
6.1 Introduction 144
6.2 Philosophical Background 145
6.2.1 Positivism and Analytical Philosophy 145
6.2.2 The Later Wittgenstein and the Concept of the Language Game 147
6.2.3 Philosophical Hermeneutics 150

6.3 Paradigms of Data Modeling 154
6.3.1 Philosophical Perspective on Data Modeling 154
6.3.2 Paradigmatic Assumptions of Functionalist Data Modeling 157
6.3.3 Paradigmatic Assumptions of Social Relativist Data Modeling 160
6.3.4 Paradigmatic Assumptions of Neohumanist Data Modeling 165

6.4 Summary and Conclusions 170
Table of Contents

7 Paradigmatic Analysis of Data Modeling Approaches 171
 7.1 Introduction 171
 7.2 Fact-based School 172
 7.2.1 Historical Roots 173
 7.2.1.1 Database Management 173
 7.2.1.2 System Design Methods 174
 7.2.2 Theoretical Roots 175
 7.2.2.1 Linguistics 176
 7.2.2.2 Artificial Intelligence 176
 7.2.2.3 Programming Languages 177
 7.2.3 Basic View of IS and Data Modeling 177
 7.2.3.1 Definition of Information System 178
 7.2.3.2 Universe of Discourse 179
 7.2.3.3 Entities 180
 7.2.3.4 Problems in Distinguishing Entities in the UoD 180
 7.2.3.5 Nature and Type of Entities 181
 7.2.3.6 Facts 182
 7.2.3.7 Conceptual Schema 183
 7.2.3.8 Information Base 184
 7.2.3.9 Changes in the UoDD – the IS Operations 184
 7.2.3.10 Summary 185
 7.2.4 Three Beliefs Underlying the Fact-based Approaches 186
 7.2.4.1 The Objective Belief 186
 7.2.4.2 The Descriptive Belief 189
 7.2.4.3 The Consensus Belief 189
 7.2.5 Classification of Fact-based Approaches 190
 7.2.6 Possible Directions for Improvements 194
 7.3 Rule-based School 198
 7.3.1 Historical Roots 200
 7.3.1.1 Concept of Information 200
 7.3.1.2 High Level Organization Models 200
 7.3.1.3 Legal Informatics 201
 7.3.2 Theoretical Roots 202
 7.3.2.1 Linguistics 202
 7.3.2.2 Organizational and Sociological Theory 202
Table of Contents

7.3.2.3 Law 203
7.3.3 Basic View of IS and Data Modeling 203
7.3.3.1 Definition of Information System 203
7.3.3.2 Implications 204
7.3.4 Three Beliefs Underlying the Rule-based Approaches 207
7.3.4.1 The Action Belief 208
7.3.4.2 The Institutional Belief 208
7.3.4.3 The Change Belief 209
7.3.5 The LEGOL/NORMA Approach 210
7.3.5.1 Background and Basic Goals 210
7.3.5.2 Basic LEGOL/NORMA Constructs 213
7.3.5.3 Summary of LEGAL/NORMA Achievements 218
7.3.6 The Language Action View 220
7.3.6.1 Background and Basic Goals 220
7.3.6.2 Basic LA Constructs: Speech Act and Discourse Theories 225
7.3.6.3 Summary of LA View Achievements 230
7.3.7 Possible Directions for Improvements 231

7.4 Summary and Conclusions 232

8 Conclusions 234
8.1 Introduction 234
8.2 Conflict about the Nature of IS Research 234
8.3 Conflict about the Nature of IS Practice 236

Appendix A: Summaries of Selected Methodologies 239

Bibliography 252

Index 281
Preface

Though the fields of information system development, in general, and data modeling in particular — the topics of this book — have amassed an impressive amount of research knowledge during the past two decades, they currently lack a global perspective and interpretation. In this context we define information systems development as the application of information technologies (computers and telecommunications) to solve and address problems in managing and coordinating modern organizations. Data modeling is concerned with describing, organizing and analyzing the properties of the ‘rawware’ of information systems — data. A wealth of research in these fields has produced an astonishing array of empirical results and practical insights, conceptual and terminological diversity and confusion, and a large suite of tools and methods. But as many researchers and practitioners alike feel, these form an isolated, disjoint, and often contradictory amalgam of knowledge. In such a situation, the synthesis of the existing knowledge is at least as valuable as the addition of more detail in the form of further empirical results, new methods and tools, and refinements in vocabulary, etc. The need for synthesis to decrease the confusion in the area has motivated us to write this book: we seek out the principal, contradictory lines of research in information systems; describe and interpret them and their results in a way which does not deny or hide their differences, but in fact highlights the differences; and thereby hope to make these lines of research understandable. At the same time we strive to shed light on similarities where they exist and to discuss possible directions for improvement.

To accomplish our task, we need an intellectual tool to penetrate beneath the ‘surface structure’ of individual pieces of IS research and to organize them in some intelligible manner. We believe we have found such a tool in the form of a philosophical framework for analyzing the assumptions which guide different lines of research on IS and which points out the ways in which each line of research is somehow limited but at the same time brings order into chaos by making visible which assumptions make the approaches so different and what the implications for adhering to alternative assumptions are. We point out that all systems development methodologies make implicit assumptions which we feel may be problematic. Let us take a concrete example. Most (but not necessarily all) modeling techniques focus on functions, data or objects as elementary building blocks. The implicit and/or explicit underlying assumptions are that:

(1) these building blocks exist in the world (realism) and
(2) there is an objectively definable set of things whose definition is independent of the perceptions of the developer (objectivism).

The implication of the first assumption is that it is the developer’s job to ‘find’ those objects as though they were the treasures of a sunken ship washed up on shore just waiting to be picked up by the first one to come along. The implication of the second assumption is that any two developers should come up with the same model (because they will find the same treasures) and if there are differences they are resolvable. If two developers do see things differently, assumption (2) suggests that one developer is not seeing the application as clearly as the other, or that one developer is simply not as good as the other.

As our analysis reveals alternative standpoints are possible as well. What if the objects are not given, but are to be constructed out of the pieces on the shore with the flotsam and jetsam of many cultures (the different user languages and views)? What if there are no universals, e.g. what are shells to one culture is money to another? Thinking along such lines, in this book we shall show:

(1) that most studies on information systems development rely on a specific standpoint which we call here a functionalist world view,

(2) that this view amounts to a distinct philosophical position, and

(3) this position is problematic in understanding and engaging in many facets of systems development.

If this point is accepted, then it is logical to ask what alternative philosophical positions are possible and what their implications for systems development and data modeling could be.

It will turn out that at least four philosophical positions can be discerned in the literature and these can account for many of the contradictory results and insights in the field. Researchers or practitioners adhering to different philosophical positions simply see different objects on the beaches (or should we say in the trenches) while developing information systems. This observation sets the principal agenda for this book: to define the fundamental philosophical positions, and to explain how they apply to systems development in general and data modeling in particular. The refinement of these issues form the core of our argument in this book. This will be a long and involved argument, like a long and winding road with many paths, but we have found it rewarding though difficult at times to navigate. We hope that many readers will enjoy the same experience, and that they will never see the same beach again after closing this book.

Rudy Hirschheim, Heinz Klein, Kalle Lyytinen
Houston, Owego and Hong Kong
Acknowledgements

This book has been both a physical and metaphorical journey for us. It has been an intellectual journey as well. Physically, it started out over 7 years ago in London and then Oxford, but has wound its way through places such as San Francisco, Owego, Jyväskylä, Lovanger, Houston, Ehringerfeld, Aalborg, Boston, Copenhagen, New York, Buffalo, Enschede, Orlando and Hong Kong. Over the years we have had many deep philosophical discussions, some of which have led to considerable disagreement, others which have resulted in the three of us uttering in unison ‘ah ha’. No matter what the outcome, these philosophical discussions were always intellectually inspiring.

We learned a lot in writing this book. But it wasn’t easy. Not much attention has been given in the literature to the kind of philosophical analysis of an applied field such as Information Systems. We felt like a voice in the wilderness when we first started with this book. Metaphorically, we had to find a path through the wilderness which would lead us to fertile grounds to satisfy our intellectual hunger. In this way, we came to know many interesting places which are not commonly visited by IS researchers. In our search for intellectual sustenance, we were delighted to find a few kindred spirits (or travel companions so to speak) who also tried to articulate the most fundamental assumptions on which the discipline of IS in general or ISD in particular rests. Among these kindred spirits we include Boland’s (1979): ‘Control, Causality and Information System Requirements’, Winograd and Flores’ (1986) ‘Understanding Computers and Cognition’, Ivani’s (1991) ‘Paradigmatic Analysis of ISD’, Dahlbom and Mathiassen’s (1993) ‘Computers in Context’, and Ehn’s (1988) ‘Work-Oriented Design of Computer Artifacts’.

Behind every significant journey is a large cast of supporting characters helping with the journeys’ organization and execution. These individuals give advice, warn of dangers, point to fruitful avenues and offer the weary travellers physical and emotional sustenance. We owe a great deal of thanks to many people who supported us in our endeavor; who sacrificed much while we spent many days sequestered away writing the manuscript. First, we would like to thank our respective families; their support and understanding during the seven years is gratefully appreciated. Next, Cambridge University Press and especially David Tranah must be thanked for their extreme patience and unwavering support. It would have been so easy for them to say: ‘look guys, enough is enough’. But they didn’t, and we sin-
xiv

Acknowledgements

cerely appreciate their understanding. Next, Jaana Porra, provided a most
penetrating and thorough critique of the entire manuscript. In doing so, she
highlighted numerous oversights and misconceptions. Juhani Ilvani, Duane
Truex and John Haynes helped in commenting on selected sections of earlier
versions of the book. Their comments helped make the book more coherent
and readable. Ronald Stamper graciously helped make material available
on LEGOL/NORMA. This allowed us to have a much better understand-
ing of this interesting rule-based data modeling approach. Similarly, Jan
Stage provided missing information on the Professional Work Practices ap-
proach. Winnie White at the University of Houston was most helpful in
compiling the bibliography, tables and figures for the book. We would also
like to acknowledge the financial support from the Academy of Finland,
Danish Natural Science Research Council, and the Information Systems
Research Center of the University of Houston. Lastly, our respective Uni-
versity departments both directly and indirectly supported our intellectual
and physical travels. We gratefully acknowledge the financial and collegial
support of the School of Management (SUNY-Binghamton), Department of
Computer Science and Information Systems (University of Jyväskylä) and
College of Business Administration (University of Houston). Thanks to all
of you.