Wind as a geological process
on Earth, Mars, Venus and Titan
RONALD GREELEY
Department of Geology and Center for Meteorite Studies, Arizona State University

JAMES D. IVERSEN
Department of Aerospace Engineering, Iowa State University

Wind as a geological process
on Earth, Mars, Venus and Titan
To Cindy and Marge
CONTENTS

Preface xi

1 Wind as a geological process 1
 1.1 Introduction 1
 1.2 Approach to the problem 3
 1.3 Significance of aeolian processes 7
 1.3.1 Relevance to Earth 9
 1.3.2 Relevance to planetary science 11
 1.4 Aeolian features on the planets 16
 1.4.1 Earth 16
 1.4.2 Mars 19
 1.4.3 Venus 28
 1.4.4 Titan 30

2 The aeolian environment 33
 2.1 Introduction 33
 2.2 Properties of atmospheres 33
 2.2.1 Hydrostatic equilibrium 33
 2.2.2 Adiabatic lapse rate 34
 2.3 Comparisons of planets and their atmospheres 35
 2.3.1 Origin of atmospheres 38
 2.4 The atmospheric boundary layer 39
 2.4.1 Turbulence 40
 2.4.2 Turbulent boundary layer 41
 2.4.3 Effect of non-neutral stability 46
 2.4.4 Pressure gradient and Coriolis forces 47
 2.4.5 Friction forces – the Ekman spiral 50
 2.4.6 Diffusion 52
 2.5 Windblown particles 53
Contents

2.6 Processes of particle formation 55
 2.6.1 Weathering 56
 2.6.2 Cataclastic processes 58
 2.6.3 Volcanism 59
 2.6.4 Precipitation and biological activity 60
 2.6.5 Aggregation 60
2.7 Sand and dust sources 61

3 Physics of particle motion
3.1 Introduction 67
3.2 Classification of motion 68
3.3 Threshold of motion 70
 3.3.1 Particle forces 71
 3.3.2 Theoretical expressions for threshold 74
 3.3.3 Wind tunnel experiments 76
 3.3.4 Roughness effects 82
 3.3.5 Effects of moisture and other cohesive forces 85
 3.3.6 Vortex threshold 85
 3.3.7 Threshold predictions for other planets 89
3.4 Particle trajectories 92
 3.4.1 Particle forces 93
 3.4.2 Saltation trajectories 94
 3.4.3 Predictions of saltation trajectories 96
3.5 The saltation layer 98
 3.5.1 Particle flux 99
 3.5.2 Concentration distribution 101
 3.5.3 Mass transport predictions for Mars and Venus 104
 3.5.4 Effect of saltation on wind speeds near the surface 104

4 Aeolian abrasion and erosion
4.1 Introduction 108
4.2 Aeolian abrasion of rocks and minerals 108
 4.2.1 Mechanics of abrasion 109
 4.2.2 Susceptibility to abrasion 112
4.3 Ventifacts 118
 4.3.1 Ventifact morphology 121
 4.3.2 Factors involved in ventifact formation 125
 4.3.3 Ventifacts on Mars and Venus 129
4.4 Rates of aeolian abrasion: Earth and Mars 131
Contents

4.5 Yardangs 133
 4.5.1 General characteristics 134
 4.5.2 Yardang localities 135
 4.5.3 Yardang formation 140
 4.5.4 Yardangs on Mars 142

5 Aeolian sand deposits and bedforms 145
 5.1 Introduction 146
 5.1.1 Sand waves 149
 5.2 Ripples 149
 5.2.1 Ripple morphology 150
 5.2.2 Internal structures in ripples 151
 5.2.3 Ripple formation 152
 5.2.4 ‘Fluid drag’ ripples, ‘normal’ ripples, and
 ‘mega-ripples’ 153
 5.2.5 Ripples on other planets 155
 5.3 Sand dunes 158
 5.3.1 Dune classification and formation 159
 5.3.2 Transverse dunes 161
 5.3.3 Longitudinal dunes 164
 5.3.4 Parabolic dunes 172
 5.3.5 Dome dunes 173
 5.3.6 Star dunes 174
 5.3.7 Other dunes 175
 5.3.8 Internal structures in dunes 177
 5.3.9 Dune migration and control 182
 5.3.10 Clay dunes 187
 5.3.11 Dunes on Mars 190
 5.4 Sand shadows and drifts 197
 5.4.1 ‘Drifts’ on Mars and Venus (?) 197
 5.5 Sand sheets and streaks 198

6 Interaction of wind and topography 199
 6.1 Introduction 199
 6.2 Atmospheric motions 199
 6.2.1 General circulation and rotational flows 200
 6.2.2 The vortex 202
 6.3 Topographical effects on surface winds 203
 6.3.1 The effects of mountains 203
 6.3.2 Separated flows 204
Contents

6.4 Wind streaks
 6.4.1 Modes of formation
 6.4.2 Streaks on Earth
 6.4.3 Wind tunnel streak simulation
 6.4.4 Amboy field experiment
 6.4.5 Wind streaks on Mars
 6.4.6 Wind streaks on Venus and Titan

7 Windblown dust
 7.1 Introduction
 7.2 Dust storms on Earth
 7.2.1 Dust storm development and effect on climate
 7.2.2 Characteristics of aeolian dust
 7.2.3 Erosion of agricultural land
 7.2.4 Dust devils
 7.2.5 Fugitive dust
 7.3 Dust storms on Mars
 7.3.1 Martian great dust storms
 7.3.2 Martian great dust storms clearing
 7.3.3 Local dust storms
 7.4 Dust deposits
 7.4.1 Loess on Earth
 7.4.2 Dust deposits on Mars

Appendix A: Nomenclature and symbols
Appendix B: Small-scale modeling of aeolian phenomena in the wind tunnel

Glossary
References
Index
PREFACE

Ralph Bagnold – an engineer by training, a military man by profession, and in many ways a geologist at heart – melded his interests into an elegant study of aeolian processes that has spanned many decades. In 1941 Bagnold published the first edition of his book, *The Physics of Blown Sand and Desert Dunes*. Often referred to simply as ‘Bagnold’s classic book’, it is indeed a classic in every sense of the word. The fact that nearly every subsequent paper dealing with aeolian processes refers to the Bagnold book bears testimony that the basic principles described by him are essentially correct and have withstood the test of time.

Our book deals with aeolian processes in the planetary context. It is not our intent to ‘replace’ Bagnold’s book or the research it represents. We learned that was neither required nor possible early in our own research program! Instead, we have built upon the solid foundation laid by Bagnold, testing the relationships defined by him through different approaches, and extrapolating the results to other planetary environments by attempting to predict how aeolian processes operate on Mars, Venus and, perhaps, Titan, the largest of the saturnian satellites.

We begin with an introduction to aeolian processes and a general overview of aeolian activity on the planets. We then discuss, in Chapter 2, the requirements for aeolian activity – a dynamic planetary atmosphere and a supply of particles capable of being moved by the wind – and describe in Chapter 3 the physical processes involved in particle movement by the wind. In Chapters 4 and 5 we describe wind-eroded and wind-deposited features and landforms. Next we consider interaction between the wind and topography and then close with a chapter on windblown dust (fine-grained material carried aloft in suspension).

Insofar as is practical, we have integrated non-Earthly aspects of aeolian activity into the appropriate chapter sections. Typically, we begin a section with a discussion of Earth (our ‘ground truth’), extend the discussion to Mars, and then close the section with speculations for Venus and Titan.

xi
Preface

Our intention is that this book be used as reference and text for upper division or graduate courses in comparative planetology. Perhaps more than any other field, planetology requires a multidisciplinary approach to combine talents from the geological sciences, engineering, chemistry, and physics. One of the biggest difficulties in comparative planetology is communication among the various disciplines. Consequently, we have attempted to write this book in such a way that it can be understood by anyone with a science or engineering background. Our own somewhat disparate backgrounds, in geological sciences and in engineering, have often forced us to reevaluate our own and each other’s viewpoints, and we hope those experiences have helped us achieve our objectives. Terms and commonly used jargon are defined where first used; an expanded glossary is also included for reference.

RG and JDI

1983

Acknowledgments

Writing a book is a substantial project. Such a project can be undertaken only with the assistance and encouragement of friends, family, and colleagues. Among the many individuals who helped in this effort, we thank P. Thomas (Cornell University), A. Peterfreund (Brown University), and M. Malin and S. Williams (both of Arizona State University), who read the entire manuscript and provided helpful discussions for improvement, as well as providing reviews for separate chapters. Critical reviews of individual chapters were also provided by R. Sharp (California Institute of Technology), D. Gillette (National Center for Atmosphere Research), S. Idso (US Department of Agriculture), L. Lyles and colleagues (Wind Erosion Research Laboratory), H. Tsoar (Ben Gurion University of the Negev), J. Veverka (Cornell University), and G. Takle (Iowa State University).

We acknowledge, with gratitude, photographic work provided by D. Ball, assisted by J. Riggio and Joo-Keong Lim, typing of countless drafts by M. Schmelzer, D. Keller, T. Gaute-in-Borg, C. Mathes, D. Reil, and T. Krock, drafting of figures by the Technical Graphics section at Iowa State University, proofreading by C. Freeley, and the assistance in locating various planetary images by J. Swan and L. Carroll of the US Geological Survey, and L. Jaramillo of Arizona State University.

Finally, we thank Steve Dwornik and Joe Boyce, Discipline Scientists for Planetary Geology of the National Aeronautics and Space Administration, for support of our research on planetary aeolian processes.