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Cosmology

The science that treats the properties and evolution of the Universe as a whole is cos-
mology. Among the sciences, it is unique in having only a single object of study — there
are no other Universes for us to use as controls, nor can we readily run the whole exper-
iment over again. As a consequence, much of the effort in modern cosmology has been
to determine the best mathematical description, or ‘model’, of the Universe we inhabit.
As we shall see, that task is not yet complete, despite the rapid advances of the past few
decades. The range of possible models is presented later in this chapter. First, though,
we need to look at the observational bases of modern cosmology, a set of astronomical
observations which have established the Hot Big Bang theory and restricted the range of
models we need to consider.

1.1 Astronomical constituents of the Universe

Since cosmology is the study of the Universe as a whole and as a single system, it is only
indirectly concerned with subsystems within the Universe. Here, I will mention only
two: galaxies and clusters of galaxies. The galaxies are assemblies of 10°-10'? stars;
many galaxies also contain appreciable amounts of interstellar gas and dust. Some of the
basic physical parameters of galaxies are: radius, typically 10°~10* parsecs*; luminosi-
ty, typically 107—10"! times the luminosity of the sun, or very roughly 10%-10* W; and
mass, typically 10°~10"? times the mass of the sun or about 10*-10* g.{ The question
of the mass of galaxies introduces an important issue in contemporary astronomy — the
possible existence of ‘dark’ non-luminous matter in galaxies (see Kormendy and Knapp,
1987; Trimble, 1987; or Primack et al., 1988). The mass of galaxies, especially galax-
ies of the spiral form shown in fig. 1.1, can be determined by measuring the speed of
their rotation as a function of distance from the center, then applying a generalization of
Kepler’s Third Law. The masses so determined are in almost every case larger than the
sum of the masses of all the stars in the galaxy, often by a factor of 3-10 or so. In addi-
tion, the measured rotation speed in the outer parts of such galaxies does not fall off as
2, but stays essentially constant (fig. 1.2), suggesting that the bulk of the mass of

* The parsec (1 pc = 3.08 x 10'® cm) is the standard unit of distance used in astronomy, and will be used
throughout this book. A further word on units: workers in the field use a jumble of S.I. and c.g.s. units as
well as some purely astronomical units like the parsec. In general, I will use the units that have become con-
ventional in the field, giving conversions where necessary to physical units.

1 In astronomy, ‘solar units’ are conventionally used for luminosity and mass. The luminosity of the sun is
L, =3.9x10% erg s; the solar mass is M, =1.99 x 10* g.
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2 1 Cosmology

Fig. 1.1 A typical spiral galaxy (M81). Photograph from the Palomar and Mt. Wilson
Observatories.
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Fig. 1.2 A set of rotation curves (plots of rotation velocity as a function of distance
from the center) for several spiral galaxies (from Rubin et al., 1982, with permission).
The velocity stays approximately constant well beyond the visible limit of the galaxy,
rather than dropping as 2, suggesting an extended halo of ‘dark matter’ in these
galaxies.
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1.1 Astronomical constituents of the Universe 3

Fig. 1.3 A cluster of galaxies. A photograph from the Palomar and Mt. Wilson
Observatories made with the 200-inch telescope.

galaxies is less concentrated than the luminous matter such as stars or gas. This is the
‘dark matter’ that we will have occasion to refer to here and in Chapters 7 and 8.

All galaxies emit radio waves as well as optical radiation at some level. In a minori-
ty of galaxies, however, the radio luminosity exceeds the optical luminosity; these are
the radio galaxies, which, together with quasi-stellar objects, make up most of the extra-
galactic sources detectable with radio telescopes. We will deal with the radio emission
from our own Milky Way Galaxy in Chapter 4, and with radio sources in general in
Chapter 7.

Most galaxies are clumped together in small groups (our own Galaxy is a member of
the Local Group, as is the Andromeda Galaxy, M31), or larger clusters of a few hundred
to a few thousand galaxies. An example is shown in fig. 1.3. The clusters contain matter
between their constituent galaxies. In some clusters, this matter is directly detected,; it is
ionized gas at a temperature of about 10’108 K, which emits detectable X-ray flux (this
intergalactic plasma is discussed further in Chapter 8). In other clusters, the evidence for
intergalactic matter is indirect. The total gravitational mass of a cluster required to hold
it together may be derived by applying the virial theorem to the cluster, assuming that
it is in equilibrium. The result is

y = BV , (1.1)

G
where 1? is the mean-square velocity of the galaxies within the cluster, and R_is the
radius of the cluster (see Chapter IV of Peebles, 1971}. The mass of clusters calculated
in this fashion is 10*-10*® g, in most cases an order of magnitude larger than the sum of
the masses of the individual galaxies. Estimates of the mass of the hot intergalactic gas
detected in some clusters show that it cannot account for the discrepancys; it is insuffi-
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4 1 Cosmology

cient to bind clusters gravitationally. Nor do there appear to be enough intergalactic stars
to bring the mass of clusters up to the value calculated from eqn. (1.1). Once again, the
existence of some form of ‘dark’ matter is suggested, in this case lying between the
galaxies.

1.2 Observational bases of Big Bang cosmology

We now turn to some astronomical observations, which establish properties of the
Universe as a whole, and upon which our present cosmological theories are based.

1.2.1 Homogeneity

The presence of clusters of galaxies and more careful analysis of the counts of galaxies
(Peebles, 1980) show that, on relatively small cosmological scales, d <30 Mpc=
3 x 107 pc or about 10% cm, the galaxies are inhomogeneously distributed (see figure
8.2). On larger scales d 2 300 Mpc, however, the distribution is approximately isotrop-
ic and homogeneous. We thus arrive at the first observational basis of cosmology — on
sufficiently large scales, the Universe appears to be homogeneous and isotropic (see
Section 8.2, however).

1.2.2 Expansion

One of the landmark discoveries of 20th century science is the recognition that the
Universe is an expanding system. This expansion was discovered and characterized in
the late 1920s by Edwin Hubble, who found that the atomic lines detected in the spectra
of distant galaxies almost always appear at wavelengths slightly greater than the rest or
laboratory wavelengths of those same atomic lines — that is, they are shifted to longer
wavelengths or redshifted. The redshift, z, is defined by

+1=2,/A

Test’

(1.2)

where A ,_is the observed wavelength. Hubble also found that, on the average, the mag-
nitude of redshift observed in the spectrum of a galaxy was proportional to its distance,
d, from us.

Hubble interpreted the redshifts he observed as instances of the Doppler effect; for
recession velocities v <€ ¢, eqn. (1.2) gives

z=vlc o< d.

In this interpretation, recession velocity is proportional to distance. This linear relation
is just what one would expect for uniform expansion of the Universe. The measured con-
stant of proportionality in the relation between v and d is now known as Hubble’s con-
stant, H,, and is evidently a measure of the rate of expansion of the Universe:

v=Hgd, or z=Hdlc. (13)

Astronomical measurements of the redshift and d show that H lies in the range
(1.3-3.2) X 10"® 7', or in more conventional astronomical units, 40-100 km s™' per
megaparsec. The factor of two uncertainty arises primarily from the difficulty of making
reliable measurements of the distance of extragalactic objects (see Rowan-Robinson,
1985). To account for the uncertainty in H, we will generally write it as 100/ km s per
megaparsec, with 0.4 < k2 <1.0.

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521358086
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-35808-8 - 3 K: The Cosmic Microwave Background Radiation
R. B. Partridge

Excerpt

More information

1.2 Observational bases of Big Bang cosmology 5

The strictly linear relationship between redshift and distance breaks down for larger
distances and higher velocities (see Weinberg, 1972). Since the redshiftis a more easily
measured quantity than distance itself, it is commonly used by cosmologists to parame-
terize the distance to a galaxy or other source, and is so used in this book.

While Hubble interpreted the redshift as a Doppler shift induced by motion of galax-
ies, the modern interpretation, based on ideas introduced in General Relativity, is some-
what different. In modern cosmological theory, the galaxies are taken as more or less
fixed* in a geometry that is itself expanding. The apparent relative recessional velocity
of an observer and a distant galaxy is then explained by the expansion of space between
the two. The expansion is specified through a quantity R known as the scale factor,
which is time dependent and increasing. The distance between any two objects in the
Universe at time ¢ may thus be written as

R(1)
dy ()= (o) d,, (ty),
where d(¢,) is the distance between those two objects at present (denoted throughout as
t,), and R(z,) is the present value of the dimensim}less scale factor. R(z,) is often set equal
to 1, and we will follow that convention. Since R > 0, it follows that all lengths and dis-
tances measured in this expanding space were shorter in the past. That statement is true
of the wavelengths of freely propagating photons as well (Weinberg, 1972). It thus
follows that 4, = R"'(t) A__, for a photon emitted at some earlier time 7. Hence

R(n) =[z(0) + 1T, (1.4)

establishing the connection between the scale factor and redshift.

Likewise, if R(t)) = 1, it may easily be shown that H = R(to), where the subscript ‘0’
is used to show explicitly that we are concerned with the present value of both the scale
factor and Hubble’s ‘constant,” since both may be functions of time.

1.2.3 Age of the Universe

If there are no forces to slow down the expansion of the Universe, R will remain con-
stant. Under these conditions, a backward extrapolation of the present expansion reveals
that R = O at some finite time in the past. As the scale factor R goes to zero, so do all dis-
tances. Hence the density goes to infinity and we cannot sensibly extrapolate further into
the past. This moment of infinite (or at least very high) density is the Big Bang origin of
the Universe. Again, assuming a constant value for R, it is easy to show that the time
elapsed since the Big Bang is H . This interval is the present age of the Universe, ¢,
For R= constant, #, lies in the range about (3-7) x 10" s or 1020 billion years, depend-
ing on the value assumed for H,. As we shall see, for more realistic cosmological
assumptions, this result is in fact an upper limit on #,. Support for the Big Bang theory
is provided by independent geophysical and astronomical measurements of the age of
various constituent parts of the Universe. The Earth-Moon system, for instance, and by
inference the solar system, is known to be 4.6 billion years old. The age of certain
long-lived radio-isotopes found in meteoritic material is 11-12 billion years (see

* (Galaxies may have small random or even systematic velocities relative to this background geometry. These
peculiar velocities, as they are called, are typically a few hundred kilometers per second and are discussed
further in Chapter 8.
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6 1 Cosmology

Fowler, 1987; Weinberg, 1972; or Narlikar, 1983) in reasonable agreement with Hofl.
So too is the calculated age of the oldest stars in our Galaxy (see summary by Tayler,
1986). It is important to note that no objects within the Universe have yet been found
with ages clearly in excess of H;' — thus age measurements are consistent with the Big
Bang theory.

Finally, the age of the Universe establishes a very rough limit to its extent. In a
Universe of age ¢, photons can have traveled at most a distance about cf, and hence an
astronomer cannot ‘see’ further than about cz,. This distance, very roughly 5 x 10° pc, is
the effective radius of the Universe. It is important to note that this same argument
implies that the Universe was smaller in the past, since it was younger. (The role of par-
ticle horizons will reappear in Chapter &; see also standard cosmology texts.)

1.2.4 Evidence for a Hot Big Bang

The discovery of the cosmic microwave background radiation (henceforth abbreviated
CBR) established that the early Universe was hot as well as dense. The key to this argu-
ment is the blackbody or thermal spectrum of the radiation (the observations are pre-
sented in Chapter 4). Let us ask what happens to a blackbody radiation field if we
extrapolate backwards in time to an epoch when the scale factor R was smaller, so z> 0.
The wavelength of all photons is decreased proportionally to R or (z + 1)™". The Planck
function, however, depends only on the product AT. It follows (see Chapter 5) that the
spectrum of the radiation was also blackbody in the past, but the temperature was higher
by a factor z + 1 (see Weinberg, 1972, Section 15.5):

T =Tyz+ 1), (1.5)

where T, is the present temperature of the CBR, approximately 3 K. Knowing the
present value of the temperature, we can calculate the temperature at any earlier epoch
using eqn. (1.5). For instance, for redshifts greater than 1000, the temperature was
> 3000 K, sufficient to ionize the major atomic constituent of the Universe, hydrogen.
At still larger redshifts, corresponding to earlier times in the history of the expanding
Universe, the temperature was even greater. Note, however, that the strict linear depen-
dence of z + 1 and T breaks down at higher temperatures, where the number of light par-
ticle species goes up (see Kolb and Turner, 1990).

One earlier epoch is of particular interest. A few minutes after the Big Bang origin of
the Universe, the temperature dropped to about 10° K, low enough to permit fusion of
neutrons and protons present in the hot primordial plasma (see Section 1.6.4 below). The
nuclei of light elements, primarily “He, were produced. This process of primordial
nucleosynthesis has been extensively studied (Peebles, 1966; Wagoner, Fowler and
Hoyle, 1967; Schramm and Wagoner, 1979; Audouze, 1987), and detailed predictions
have been made of the abundances of the light nuclei produced in the Hot Big Bang.
These predicted abundances (fig. 1.4) agree well with astronomical determinations of
the abundances of these same nuclei in the oldest stars and other matter in our Galaxy
(Boesgaard and Steigman, 1985; Walker et al., 1991), providing additional strong
support for the Hot Big Bang model.
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Fig. 1.4 Predicted abundances for the light nuclei produced in the first few minutes of
a Hot Big Bang. Note the initial rapid rise in the abundance of deuterium (*°H) as the
Universe cooled. Between ¢ = 1 and 4 min, the deuterium was incorporated into other
nuclei, especially ‘He. Adapted from Wagoner (1973); n,/n =3 x 10" was assumed.

1.3 Cosmological models

We will now incorporate these observations into a general mathematical description for
the properties of the Universe as a whole. Such descriptions are called cosmological
models. Note the plural; as we will soon see, many mathematical models are consistent
with the observational evidence now available. Of course, only a single model can best
describe the Universe, and much of the effort in modern cosmology has been devoted to
testing the models observationally, with the hope of reducing the range of possible
models.

Like most models in physics, cosmological models ignore some of the details (e.g.,
inhomogeneities in the Universe). Most are based on the cosmological principle, the
notion that the Universe is isotropic and homogeneous on a large scale or, more descrip-
tively, ‘the Universe is the same everywhere.’

1.3.1 The Robertson-Walker metric

If the Universe is isotropic and homogeneous on a large scale, the underlying geometry
of the Universe must also be isotropic (exceptions are discussed in Section 8.3). The
space—time geometry of the Universe may be completely specified by giving its metric
tensor g, — see texts on General Relativity; Peebles (1971), Weinberg (1972) or
Narlikar (1983), for instance.

For a general set of four space—time coordinates, x*, the invariant interval ds” is given
in terms of the metric tensor as
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3
ds? = Y g, dx¢dx".

1,v=0
For instance, ordinary Minkowski space of Special Relativity has

80=1 8,=8,=8;="1

and all other, off-diagonal, elements are 0; here x° is chosen to be ct.

The presence of mass (and hence gravity) in the Universe precludes use of the
Minkowski metric in cosmology. Instead, the appropriate metric for an expanding
isotropic Universe is the Robertson—Walker metric (see Robertson and Noonan, 1968;
Peebles, 1971; or Weinberg, 1972, for a derivation and further details). In spherical
coordinates, the metric is

ds? =2 d? — RZ(t){l—dfk% +72d0? + r? sin20 dg? } (1.6)
The quantities r, 8 and ¢ are coordinates fixed in the expanding geometry and are called
comoving coordinates. As we have noted, the galaxies are approximately at rest in
comoving coordinates, and expansion is accounted for by the scale factor, R(r). The
spatial part of the Robertson—Walker metric can have three global curvatures, depend-
ing on the value of the quantity . For k = 0, the spatial geometry of the Universe is flat,
i.e. Euclidean, so that comoving distances are given by the usual relation, d? = x> + y* +
z%. The geometry may also be positively or negatively curved (with k < 0), however, in
which case d? Z x? +y? + 7%, respectively. A positively curved Robertson—Walker
metric is a closed geometry, limited in volume but without edges, just as the two-
dimensional surface of a sphere is closed, finite and without boundaries. The negatively
curved case, like the flat case, is an open, infinite geometry.

1.3.2 Density and curvature

These three possible curvatures are directly linked by General Relativity to the amount
of matter in the Universe. A high density produces positive curvature; in the low density
case, the curvature is negative. The particular density corresponding to a flat geometry,
the critical density, is denoted p ; in the next section we will evaluate it numerically.

1.3.3 Dynamics

We know that the Universe is expanding now, so that R(¢) increases with time. If there
were no forces* to alter the expansion, R would remain constant, as shown by curve a in
fig. 1.5. Since the density of the Universe is nonzero, however, we know that at least one
long-range attractive force is acting — gravity. It acts to slow the expansion. The slowing
of the expansion may be represented schematically by curvature in fig. 1.5 — see curves
b and c. One evident consequence of the presence of matter in the Universe is that the
present age of the Universe (defined as the time since R = 0 at the Big Bang) is less than
H.

The relation governing expansion of the Universe — that is, the function R(r) — may be
found by solving the field equations of General Relativity (see Weinberg, 1972). Here,

* ] recognize that, for pedagogical purposes, I am mixing Newtonian concepts like force with General
Relativistic ones like space curvature.
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1.3 Cosmological models 9

Scale R
factor

|

Fig. 1.5 The scale factor R as a function of time for various cosmological models. The
different models are specified by their space curvature, k, and by the mean value of
present density, p,. The slope of the curves at the present epoch, t,, is fixed by mea-
surements of Hubble’s constant, H. From the figure, it may be seen that the age of the
Universe (the time since R = 0) is less than Ha‘ for models with p,> 0.

following McCrea and Milne (1934) and Callan, Dicke and Peebles (1965), I will take
a simpler, but quite valid, approach using Newtonian physics.

Consider a sphere centered at an arbitrary point O in the expanding Universe. Let its
radius at a particular time be R(¢); we will assume that R(¢) is large enough that the
sphere represents a fair sample of the Universe, yet small enough that the curvature of
space can be neglected. Now consider the acceleration of a unit mass on the sphere’s
surface towards O; it is

Ray=—3M (17
R*(1)
where M is the mass inside the sphere.* In turn, in this Newtonian model,
M= % R (Hp(2). (1.8)

Here p(¢) is the density at time .

We now make use of the conservation of mass. If the density of the Universe includes
only material particles, which interact only gravitationally and exert no pressure (we
specifically exclude radiation), then V() p(z) = Wt p(t,), which leads to

R3(1,)

pt) = )

plty).

If, as above, we set R(f,) = 1, and write the present density as p, for simplicity, we have
for this simple case excluding radiation,

* The rest of the isotropic, homogeneous Universe outside the sphere exerts no net force on the unit mass.
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Fig. 1.6 A sphere of radius R about an arbitrary point O in a homogeneous Universe;

—R is the magnitude of the inward acceleration of the test mass, m.

pH=R31) p,. 1.9
Combining (1.7), (1.8) and (1.9),

Rt = —%ﬂ:GpOR‘Z(t). (1.10)

The first integral of eqn. (1.10) may be found by multiplying both sides by R, then noting

that
.. 2 . _
RR:i R_ s RR‘2=i(—1).
dr\ 2 dt\ R

Thus, after integration, we find
R()= gﬂGpoR‘l(t)+constant. (1.1D)

In this Newtonian calculation, it may easily be shown that the constant of integration is
related to the total energy per unit mass. In the full, General Relativistic solution, the
connection between dynamics, density and space curvature becomes manifest; the con-
stant of integration is found to be —kc%. Hence, finally,

R:(1)= gnGpOR-l(t)—kca (1.12)

where k > 0, = 0 or < 0 for positively curved, flat or negatively curved space, respec-
tively. Although we have used Newtonian concepts in this derivation, the result is the
same as is found (e.g. Weinberg, 1972) from a fully relativistic calculation.

Solutions to eqn. (1.12), which is the basic equation of mathematical cosmology, are
presented in texts such as those by Bondi (1960), Peebles (1971), Weinberg (1972),
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