CONTENTS

```
Preface xi

1 Introduction 1
  1.1 Function of proteins and nucleic acids 1
  1.2 Structure and dynamics 2
  1.3 Scope of this book 4

2 Structure of proteins, nucleic acids, and their solvent surroundings 6
  2.1 Water and aqueous solutions 7
  2.2 Protein structure 11
  2.3 Nucleic acid structure 16
  2.4 Molecular associations 22

3 Dynamics of proteins, nucleic acids, and their solvent surroundings 25
  3.1 Water and aqueous solutions 25
  3.2 Protein dynamics 28
  3.3 Nucleic acid dynamics 31
  3.4 Molecular association dynamics 33

4 Theoretical methods 35
  4.1 Survey of approaches 35
  4.2 Model functions for potential energy or potential of mean force 39
  4.3 Relationship between energy minimization and molecular dynamics 44
  4.4 Energy minimization 47
```
Table of Contents

5 Short time dynamics
5.1 Introduction
5.2 Results for proteins
 5.2.1 Local aspects
 5.2.2 Collective aspects
 5.2.3 Dynamic models
 5.2.4 Experimental connections
5.3 Results for nucleic acids
 5.3.1 Motions of individual atoms
 5.3.2 Hydrogen bond dynamics
 5.3.3 Dynamics of backbone torsional angles
 5.3.4 Dynamics of double helical regions
5.4 Nature of short time dynamics

6 Local structural transitions
6.1 Introduction
6.2 Results for proteins
6.3 Results for nucleic acids
6.4 Nature of local structural transitions

7 Global structural changes
7.1 Introduction
7.2 Results for proteins
7.3 Results for nucleic acids
 7.3.1 Large scale motions in DNA
 7.3.2 Large scale motions in tRNA
7.4 Nature of global structural changes

8 Dynamics of molecular associations
8.1 Introduction
8.2 Superoxide dismutase
8.3 Nature of molecular association
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ix</td>
<td>ix</td>
</tr>
<tr>
<td>9 Recent developments and future directions</td>
<td>157</td>
</tr>
<tr>
<td>9.1 Introduction</td>
<td>157</td>
</tr>
<tr>
<td>9.2 Computing methods</td>
<td>158</td>
</tr>
<tr>
<td>9.2.1 Improvements in computer hardware</td>
<td>158</td>
</tr>
<tr>
<td>9.2.2 Advances in methodology</td>
<td>160</td>
</tr>
<tr>
<td>9.3 Biomolecular structure</td>
<td>161</td>
</tr>
<tr>
<td>9.4 Biomolecular function</td>
<td>165</td>
</tr>
<tr>
<td>9.4.1 Ligand binding</td>
<td>165</td>
</tr>
<tr>
<td>9.4.2 Enzyme activity</td>
<td>167</td>
</tr>
<tr>
<td>9.4.3 Macromolecular association</td>
<td>168</td>
</tr>
<tr>
<td>9.5 Outstanding problems</td>
<td>170</td>
</tr>
<tr>
<td>Appendix 1 Numerical integration of the equations of motion</td>
<td>173</td>
</tr>
<tr>
<td>Appendix 2 Detailed description of computer programs and procedures for energy minimization and molecular dynamics</td>
<td>181</td>
</tr>
<tr>
<td>Appendix 3 Molecular dynamics at constant temperature and pressure</td>
<td>188</td>
</tr>
<tr>
<td>References</td>
<td>194</td>
</tr>
<tr>
<td>Index</td>
<td>229</td>
</tr>
</tbody>
</table>