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1

Basic convexity

1.1. Convex sets and combinations

A set A CEL is convex if together with any two points x, y it contains
the segment [x, y], thus if

(1-MAx+Aye A forx,ye A and0=A= 1.

Examples of convex sets are obvious; but observe also that Bg(z,p) U A
is convex if A is an arbitrary subset of the boundary of the open ball
By(z, p). As immediate consequences of the definition we note that
intersections of convex sets are convex, affine images and pre-images of
convex sets are convex and if A, B are convex, then A + B and AA
(4 € R) are convex.

Remark1.1.1. For A CE"” and A, u>0 one trivially has AA4 +
A D (A+ wA. Equality (for all A, u>0) holds precisely if A is
convex. In fact, if A is convex and x € AA + uA, then x = Aa + ub with
a, b € A and hence

x=(A+u)(Aiua+ - b)e(/l+y)A;

A+ u
thus A4 + uA = (A + u)A. The other direction of the assertion is trivial.

A set A CLE" is called a convex cone if A is convex and nonempty
and if x € A, A= 0 implies Ax € A. Thus a nonempty set A CLE" is a
convex cone if and only if A is closed under addition and under
multiplication by non-negative real numbers.

By restricting affine and linear combinations to non-negative coeffi-
cients, one obtains the following two fundamental notions. The point
x € E" is a convex combination of the points x;, ..., x, € E" if there
are numbers A, ..., A; € R such that
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k k
x=2Mx hZ0 (i=1,...,k), Xk =1
i=1 i=1

Similarly, the vector x € E” is a positive combination of the vectors x,
, xp e E™if
k
x=DAx; wWithA4; Z0 (i=1,...,k).
i=1
For A CLE” the set of all convex combinations (positive combinations)
of any finitely many elements of A is called the convex hull (positive

hull) of A and is denoted by conv A (pos A).

Theorem 1.1.2. If A CLE" is convex, then conv A = A. For an arbitrary
set ACL", convA is the intersection of all convex subsets of E"
containing A. If A, B CE", then conv(A + B) = conv A + conv B.

Proof. Let A be convex. Trivially, A C conv A. By induction we show
that A contains all convex combinations of any k points of A. For k =2
this holds by the definition of convexity. Suppose that it holds for £k — 1
and that x = Ax+.. .+ A with xy, ..., x,€ A, A1 +... .+, =1
and A, ..., Ay >0, without loss of generality. Then

k—1
x=(1-4) 2
i=1

! x,-+/lkxkeA
Ak

since

>0, Z

11 — Ak
and hence

k-1

i= 11 - Ak
by hypothesis. This proves A = conv A. For arbitrary A CE” let D(A)
be the intersection of all convex sets K CE" containing A. Since
A CconvA and conv A is evidently convex, we have D(A) C conv A.
Each convex K with A C K satisfies convA C conv K = K, hence
conv A C D(A), which proves the equality.

Let A, BCLE”". Let x e conv(A + B), thus

k

k
x = >Afa; + b) witha;e A, b;e B, 4, Z0, DA =1
i=1 i=1

x; € A

and hence x = D Aa;+ D Ab;econvA +convB. Let xeconvA +
conv B, thus

X = zlia,‘ + Eﬂ]b]
i J
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with a;€ A, bje B, A, ut; Z0, 24 = 2 u; =1. We may write
X = Ezl,,u](a, + b])
ij

and deduce that x € conv(A + B). [ ]
An immediate consequence is that conv (conv A) = conv A.

Theorem1.1.3. If ACE”" is a convex cone, then posA = A. For a
nonempty set A CE", pos A is the intersection of all convex cones in E”
containing A. If A, B CE", then pos(A + B) = pos A + pos B.

Proof. As above. |
The following result on the generation of convex hulls is fundamental.

Theorem 1.1.4 (Carathéodory’s theorem). If A CE” and x € conv A,
then x is a convex combination of affinely independent points of A. In
particular, x is a convex combination of n + 1 or fewer points of A.

Proof. The point x € conv A has a representation
k k

x=D2Ax; withx;e A, 4; >0, DA =1
i=1 i=1

with some k € N, and we may assume that & is minimal. Suppose that
X1, ..., x; are affinely dependent. Then there are numbers aq, ...,

ay € R, not all zero, with
k

k
Max;=0 and Da; = 0.
=1 i=1

We can choose m such that A,,/a,, is positive and, with this restriction,
as small as possible (observe that all A; are positive and at least one «; is
positive). In the affine representation

k A

x = E(Ai - = ai)xi

i=1 m
all coefficients are non-negative (trivially, if «; =0, otherwise by the
choice of m) and at least one of them is zero. This contradicts the
minimality of k. Thus x;, ..., x; are affinely independent, which
implies k=n + 1. |

The convex hull of finitely many points is called a polytope. A
k-simplex is the convex hull of k& + 1 affinely independent points, and
these points are the vertices of the simplex. Thus Carathéodory’s
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theorem states that conv A is the union of all simplices with vertices in
A.

Arnother equally simple and important result on convex hulls is the
following.

Theorem 1.1.5 (Radon’s theorem). Each set of affinely dependent points
(in particular, each set of at least n + 2 points) in E" can be expressed as
the union of two disjoint sets whose convex hulls have a common point.

Proof. If xq, ..., x; are affinely dependent, there are numbers aq,
..., ay € R, not all zero, with
k k

E a;x; =0 and E a; = 0.
- 1 i = 1
iz =

We may assume, after renumbering, that «; > 0 precisely for i=1, ...,
J; then 1 = j < k (at least one a; is £ 0, say > 0, but not all «; are > 0).
With

(X:=a’1+...+a/l'=_((3¥]‘+1+...+a/k)>0
we obtain
j w. k a.
1 1
X = Z—x. = E (-—- —)x.
St i=j+1 al”
and thus x econv{xy, ..., x;) Nconv{x;i1, ..., x;}. The assertion
follows. [ ]

From Radon’s theorem one easily deduces Helly’s theorem, a funda-
mental and typical result of the combinatorial geometry of convex sets.

Theorem 1.1.6 (Helly’s theorem). Let Ay, ..., Ay CE” be convex sets.
If any n + 1 of these sets have a common point, then all the sets have a
common point.

Proof. Suppose that k > n + 1 (for k < n + 1 there is nothing to prove,
and for k= n+1 the assertion is trivial) and that the assertion is
proved for & — 1 convex sets. Then for i e {1, ..., k} there exists a
point

x;€ AyN ... NAN...N A

where A; indicates that A; has been deleted. The k= n + 2 points x4,
., x; are affinely dependent; hence from Radon’s theorem we can
infer that, after renumbering, there is a point

x € conv{xy, ..., x;} Nconv{xy, ..., X}
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for some je {1, ..., k—1}. Because x1, ..., x;€ Ajy, ..., Ax we
have

XGCOHV{XI,...,XI'}CAJ'_‘.In...mAk,
similarly x € conv {xj1(, ..., X} T A N... N A, [ |

Here is a little example (another one is Theorem 1.3.11) to demon-
strate how Helly’s theorem can be applied to obtain elegant results of a
similar nature:

Theorem1.1.7. Let N be a finite family of convex sets in E" and let
K CLE" be convex. If any n + 1 elements of J are intersected by some
translate of K, then all elements of M are intersected by a translate of K.

Proof. Let M= {Aq, ..., Ay}. To any n + 1 elements of {1, ..., k},
say 1, ..., n+1, there are telE” and x;e€ A;N(K + ), hence
~te K—A;, fori=1, ..., n+ 1. Thus any n + 1 elements of the
family {K — A4, ..., K — A;} have nonempty intersection. By Helly’s
theorem there is a vector —relE” with —te K — A; and hence
ANK+t)+Tforie{l, ..., k}. ]

Next we look at the interplay between convexity and topological
properties. We start with a simple observation.

Lemmal.1.8. Let ACLE" be convex. If x cintA and y eclA, then
[x,y)Cint A.

Proof. Let z=(1—-A)y + Ax with 0 <A<1. We have B(x,p) C A for
some p > 0; put B(o, p) =: U. First we assume y € A. Let w e AU + z,
hence w=Au+z with wuelU. Then x+ueA, hence w=
(1-A)y+A(x +uye A. This shows that AU +zCA and thus
z €int A.

Now assume merely that y e clA. Put V :=[3/(1 — A)]JU + y. There
is some a € A N V. We have a = [A/(1 — A)Ju + y with u € U and hence
z=(1—-Aa+Aix—-u)e A. This proves that [x,y)C A, which
together with the first part yields [x, y) Cint A. |

Theorem1.1.9. If A CLE" is convex, then int A and cl A are convex. If
A CULE” is open, then conv A is open.

Proof. The convexity of int A follows from Lemma 1.1.8. The convexity
of cl A for convex A and the openness of conv A for open A are easy
exercises. ]
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The union of a line and a point not on it shows that the convex hull
of a closed set need not be closed. This is different for compact sets, as
a first application of Carathéodory’s theorem shows.

Theorem 1.1.10. If A CLE", then convcl A Cclconv A. If A is bounded,
then convcl A = clconv A. In particular, the convex hull of a compact set
is compact.

Proof. convcl A Cclconv A is easy to see. Let A be bounded; then
n+l

{(Al, ceey A’n+1> X115 - vs xn+1)lli = 0’ X; € CIA’ EAI = 1}
i=1
is a compact subset of R"*! x (E")"*!, hence its image under the

continuous map
n+l

My ooy Aprts X1y ooy Xpgr) = 2 A € BT
i=1

is compact. By Carathéodory’s theorem, this image is equal to convcl A.
Thus clconv A C cleconvel A = convcel A. ]

The set clconv A, which by Theorem 1.1.9 is convex, is called for
short the closed convex hull of A. This is also the intersection of all
closed convex subsets of E” containing A.

To obtain information on the relative interiors of convex hulls, we
first consider simplices.

Lemmal.1.11. Let x{, ..., x; € &" be affinely independent; let S :=
convi{xy, ..., xz} and x € aff S. Then x e relintS if and only if in the
unique affine representation

k
le=1

i=1

k
X = E/lixi with
i=1
all coefficients A; are positive.
Proof. Clearly we may assume that k£ = n + 1. The condition is neces-

sary since otherwise, because the representation is unique, an arbitrary
neighbourhood of x would contain points not belonging to S. To prove

sufficiency, let x be represented as above with all 4; > 0. Since xq, ...,
x,4+1 are affinely independent, the vectors v(x;), ..., T(x,+1) (see
‘Conventions and notation’) form a linear basis of E” X R, and for
y € E” the coefficients yy, ..., 4,41 in the affine representation

n+1 n+1

y = 2 wx; with X =1
izl izl
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(the ‘barycentric coordinates’ of y) are just the coordinates of t(y) with
respect to this basis. Since coordinate functions in E"*! are continuous,

the coefficients u;, ..., u,+1 depend continuously on y. Therefore,
6> 0 can be chosen such that ;>0 (=1, ..., n+ 1) and thus y e S
for all y with |y — x| < 8. This proves x € int S. [ |

Theorem1.1.12. If A C " is convex and nonempty, then relint A + .

Proof. Let dimaff A = k, then there are k + 1 affinely independent
points in A. Their convex hull S satisfies relint § + J by Lemma 1.1.11,
furthermore § C A and aff S = aff A. B

In view of this theorem, it makes sense to define the dimension,
dim A, of a convex set A as the dimension of its affine hull. The points
of relint A are also called internal points of A.

The description of relintconvA for an affinely independent set A
given by Lemma 1.1.11 can be extended to arbitrary finite sets.

Theorem 1.1.13. Let x1, ..., x, €E"; let P:=conv{xy, ..., x} and
x € E". Then x € relint P if and only if x can be represented in the form
k k
x=Dhx; withh; >0 (i=1,...,k), DA =1
i=1 i=1

Proof. We may clearly assume that dim P = n. Suppose that x € int P.
Put
1
y = l=§:1 I Xis
then y € P. Since x € int P, we can choose z € P for which x €[y, z).

There are representations
k k

2= Dux; withy; 20, 2pu =1,
i=1 izl

x=(01-A)y +Aiz with 0=A<1,
which gives
k 1 k
x = D Ax; with 4; = (1 = 4) -+ A >0, DA=1.

i=1 =1
Vice versa, suppose that
k

k
x = > Ax; withi; >0, DA =1.
i=1 i=1

We may assume that x;, ..., x,;; are affinely independent. Put
Ai=M+...+ 4,4 and
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n+1 A
= _IX,‘.
y 21 ,1
Lemma 1.1.11 gives y eintconv{xy, ..., x4} CintP. If k=n+1,
then x = y € int P. Otherwise, put
k
Ai
Z = Xi.
i=§+11 -4
Then z € P and x € [y, z) Cint P by Lemma 1.1.8. |

Theorem1.1.14. Let A CLE" be convex. Then
(a) relint A =relintcl A,
(b) clA =clrelint 4,
(c) relbd A =relbdcl A = relbdrelint A.

Proof. We may clearly assume that dimA = n. Part (a): trivially,
intACintclA. Let x eintclA. Choose y eintA. There is zeclA
with x €[y, z), and Lemma 1.1.8 shows that x eintA. Part (b):
trivially, clA Dclint A. Let x eclA. Choose y eint A. By Lemma
1.1.8 we have [y,x)CintA, hence x eclintA. Part (¢): bdclA
=cl(cl A\int(cl A) = cl A\int A =bd A, using (a). Then bdintA =
cl(int A\int (int A) = cl A\int A = bd A, using (b). |

We end this section with a definition of the central notion of this
book. A nonempty, compact, convex subset of E” is called a convex
body (thus in our terminology, a convex body need not have interior
points). By X" we denote the set of all convex bodies in E” and by X
the subset of convex bodies with interior points. For @+ A CE" we
write X(A) for the set of convex bodies contained in A and Xy(A) =
X(A) N Xg. Further, D" denotes the set of nonempty polytopes in E”,
and D¢ =P" N X§.

Notes for Section 1.1

1. The early history of the theorems of Carathéodory, Radon and Helly, and
many generalizations, ramifications and analogues of these theorems forming
an essential part of combinatorial convexity can be studied in the survey
article of Danzer, Griinbaum & Klee [32], which is still strongly re-
commended. Various results related to Carathéodory’s theorem can be found
in Reay (1965). An important extension of Radon’s theorem is Tverberg’s
theorem (Tverberg 1966, 1981): Each sct of at least (m — 1)(n + 1) + 1 points
in E* (where m =2) can be partitioned into m subsets whose convex hulls
have a common point. A survey of later developments is given by Eckhoff
(1979). There one also finds hints about more recent developments of the
theorems of Carathéodory, Radon and Helly in the abstract setting of
so-called convexity spaces.
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2. It is clear how a version of Carathéodory’s theorem for convex cones is to be
formulated and how it can be proved. A common generalization, a version of
Carathéodory’s theorem for ‘convex hulls of points and directions’, is given
by Rockafellar [29], Theorem 17.1.

1.2. The metric projection

In this section, A CE” is a fixed nonempty closed convex set. To each
x € E” there exists a unique point p(A4, x) € A satisfying

|x — p(A, x)| = |x — y| forally e A.
In fact, for suitable p > 0 the set B(x, p) N A is compact and nonempty,
hence the continuous function y — |x — y| attains a minimum on this
set, say at yo; then |x — yo|=|x — y| for all y € A. If, also, y; € A
satisfies |x — y;| =[x — y| for all y € A, then z =: (yg+ y;)/2€ A and
Ix — z| <|[x — yol, except if yo = y;. Thus yo =: p(A, x) is unique.

In this way a map p(A, - ):E" — A is defined; it is called the metric
projection or nearest-point map of A. It will play an essential role in
Chapter 4 when the volume of local parallel sets is investigated. It also
provides a simple approach to the basic support and separation proper-
ties of convex sets (see the next section), as used by Botts (1942) and
McMullen & Shephard [26].

We have |x — p(A4, x)| = d(A, x), and for x € E"\A we denote by
x — p(A4, x)

d(A, x)
the unit vector pointing from the nearest point p(A, x) to x and by

R(A, x) = {p(A, x) + Au(A, x)|A = 0}
the ray through x with endpoint p(A4, x).

u(A, x) =

Lemmal.2.1. Let x € E"\A and y € R(A, x); then p(A, x) = p(A, y).

Proof. Suppose that p(A, y) + p(A, x). If y € [x, p(A4, x)), then
e — p(A, W= |x =yl + |y = p(4, y)
<lx =yl +1ly - p(4 x)|
=[x — p(4, x)|,
which is a contradiction. If x €[y, p(A4, x)), let g € [p(A, x), p(A, y)]
be the point such that the segment [x, g] is parallel to [y, p(A, y)]. Then

x—q| |y = p@A, ) <1

lx = p(4, )| |y = p(4, x)|
again a contradiction. |
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Theorem 1.2.2. The metric projection is contracting, that is,
lp(A, x) = p(A, )| S |x — y| forx, y € E".

Proof. We may assume that v ‘= p(A, x) — p(A, y) + o. We assert that
<x - p(A’ x): U> = 0. (*)
If this is false, then x ¢ A and the ray R(A, x) meets the hyperplanes

through p(A, y) that is orthogonal to v in a point z, and we deduce
from Lemma 1.2.1 that

2 = p(A, )l <z = p(4, ©)| = [z - p(A, 2)],
which is a contradiction. Hence (*) holds. Analogously we get
(y = p(A, y),v) =0. Thus the segment [x, y] meets the two hyper-
planes that are orthogonal to v and that go through p(A4, x) and
P(A, y) respectively. Now the assertion is obvious. |

Lemma 1.2.3. Let S be a sphere containing A in its interior. Then
P(A, §)=bd A.

Proof. p(A, S)Cbd A is clear. Let x e bd A. For i € N choose x; in the
interior of § (that is, of the ball bounded by S) such that x; ¢ A and
|x; — x| < 1/i. From Theorem 1.2.2 we have

lx = p(A, x)| = [p(A, x) — p(4, x| = [x — x| < 1/i.
The ray R(A, x;) meets S in a point y; and we have p(A4, y;) = p(A, x;),
hence |x — p(A, y;)| <1/i. A subsequence ( Yi)jen converges to a point

y € S. From lim p(A, y;) = x and the continuity of the metric projection
we see that x = p(4, y). Thus bd A C p(4, §). |

The existence of a unique nearest-point map is characteristic of
convex sets. We prove this result here to complete the picture, although
no use will be made of it.

Theorem 1.2.4. Let A CE”" be a closed set with the property that to each
point of E” there is a unique nearest point in A. Then A is convex.

Proof. Suppose A satisfies the assumption but is not convex. Then
there are points x, y with [x, y] N A = {x, y}, and one can choose p >0
such that the ball B = B((x + y)/2,p) satisties BN A=. By an
elementary compactness argument, the family @B of all closed balls B’
containing B and satisfying (int B'’) N A =J contains a ball C with
maximal radius. By this maximality, there is a point p € CN A, and by
the assumed uniqueness of nearest points in A it is unique. If bd B and
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bd C have a common point, let this (unique) point be g, otherwise let g
be the centre of B. For sufficiently small £ > 0, the ball C + ¢(qg — p)
includes B and does not meet A. Hence, the family B contains an
element with greater radius than that of C, a contradiction. ||

Note for Section 1.2

Theorem 1.2.4 was found independently (in a more general form) by Bunt
(1934) and Motzkin (1935); it is usually associated with the name of Motzkin. In
general, a subset A of a metric space is called a Chebyshev set if for each point
of the space there is a unique nearest point in A. There are several results and
interesting open problems concerning the convexity of Chebyshev sets in normed
linear spaces. For more information, see Valentine [30], Chapter VII, Marti
[25], Chapter IX, Vlasov (1973) and §6 of the survey article by Burago &
Zalgaller (1978).

1.3. Support and separation

The simplest support and separation properties of convex sets seem
intuitively obvious, and they are easy to prove. Nevertheless, their many
applications make them a basic tool in convexity.

Let A CE” be a subset and H C E" a hyperplane and let H*, H~
denote the two closed halfspaces bounded by H. We say that H
supports A at x if xe AN H and either ACH” or ACH™. His a
support plane of A or supports A if H supports A at some point x,
which is necessarily a boundary point of A. If H =H,, , supports A and
ACH, ,={yelE"[(y, u) =a}, then H, , is called a supporting half-
space of A and u is called an exterior or outer normal vector of both
H,, and H,,. If, moveover, H,, supports A at x, then u is an
exterior normal vector of A at x. A flat E supports Aatx if xe ANE
and E lies in some support plane of A.

Lemmal.3.1. Let ACE" be nonempty, convex and closed and let
x € E™\A. The hyperplane H through p(A, x) orthogonal to u(A, x)
supports A.

Proof. Clearly H N A + . Let H™ be the closed halfspace bounded
by H that does not contain x. Suppose there exists some y € A with
y¢ H™. Let z be the point in [p(A, x), y] nearest to x. Then
Ix — z| < |x — p(A, x)|, which contradicts the definition of p(A, x) since
z € A. This shows that A C H™. |

Theorem1.3.2. Let A CE" be convex and closed. Then through each
boundary point of A there is a support plane of A. If A + & is bounded,
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then to each vector u € E"\{o} there is a support plane to A with exterior
normal vector u.

Proof. Let x e bd A. First let A be bounded. By Lemma 1.2.3 there is a
point y € E"\A such that x = p(A, y). By Lemma 1.3.1 the hyperplane
through p(A, y) = x orthogonal to y — x supports K at x.

If A is unbounded, there exists through x a support plane H of
AN B(x,1); let H™ be the corresponding supporting halfspace of
AN B(x,1). If there is a point ze€ A\H ™, then [z,x]C A, but
[z,x) N B(x,1) ¢ H™, a contradiction. Hence H supports A.

Let A be bounded and u € E"\{o}. Since A is compact, there is a
point x € K satisfying (x, u) =sup {{y, u)|y € K}. Evidently {y € E"|
(y, u) = {x, u)} is a support plane to A with exterior normal vector u.

]

The existence of support planes through arbitrary boundary points is
characteristic for convex sets, in the following precise sense:

Theorem 1.3.3. Let A CE" be a closed set such that int A + & and such
that through each boundary point of A there is a support plane to A.
Then A is convex.

Proof. Suppose that A satisfies the assumptions but is not convex. Then
there are points x, y € A and z € [x, y] with z ¢ A. Since int A + & (and
n 22, as we may clearly assume), we can choose a € int A such that x,
y, a are affinely independent. There is a point b e bd A N [a, z). By
assumption, through b there exists a support plane H to A, and a ¢ H
because a € int A. Hence H intersects the plane aff{x, y, a} in a line.
The points x, y, @ must lie on the same side of this line, which is
obviously a contradiction. n

We turn to separation. Let A, BCLE"” be sets and H,,CE" a
hyperplane. The hyperplane H, , separates A and B if AC H,, and
B C Hj ,, or vice versa. This separation is said to be proper if A and B
do not both lie in H, ,. The sets A and B are strictly separated by H, ,
if ACintH,, and BCintH ,, or vice versa, and they are strongly
separated by H, , if there is an £ >0 such that H, , . and H, ,,, both
separate A and B. Separation of A and a point x means separation of
A and {x}. We first consider this special case:

Theorem1.3.4. Let A CLE" be convex and let x e E"\A. Then A and x
can be separated. If A is closed, then A and x can be strongly separated.
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Proof. If A is closed, the hyperplane through p(A, x) orthogonal to
u(A, x) supports A and hence separates A and x. The parallel
hyperplane through (p(A, x) + x)/2 strongly separates A and x. If A is
not closed and x ¢ cl A, then a hyperplane separating clA and x a
fortiori separates A and x. If x ecl A, then x e bdclA by Theorem
1.1.14, and by Theorem 1.3.2 there is a support plane to cl A through x;
it separates A and x. ]

Corollary 1.3.5. Each nonempty closed convex set in E” is the intersection
of its supporting halfspaces.

Separation of pairs of sets can be reduced to separation of a set and a
point:

Lemma1.3.6. Let A, BCE" be nonempty subsets. A and B can be
separated (strongly separated) if and only if A— B and o can be
separated (strongly separated).

Proof. We consider only strong separation; the other case is analogous
(or put £=0). Suppose that H,, strongly separates A and B, say
ACH, ., and BC H; .+ for some £>0. Let x € A— B; thus
x=a—b withae A, beB. From (g, u)=a—¢ and (b,u)Za+¢
we get (x,u)=—2¢ so that A— B and o are strongly separated
by H, ;.
Suppose that A — B and o can be strongly separated. Then there are

u € E"\{o} and & > 0 such that (x, u) = —2¢ forall x € A — B. Let

o :=sup {{a, u)la € A},

B :=inf {{b, u)|b € B}.
For ac A, be B we have (a,u) — (b, u) = —2¢, hence f— a=2e.
Thus Hy, (4+p)» strongly separates A and B. |

If A, BCE" are convex, then A — B is convex. If A is compact and
B is closed, then A — B is easily seen to be closed. The condition
o¢ A — B is equivalent to AN B =(J. Hence from Lemma 1.3.6 and
Theorem 1.3.4 we deduce:

Theorem 1.3.7. Let A, B CLE" be nonempty convex sets with AN B =,
Then A and B can be separated. If A is compact and B is closed, then A
and B can be strongly separated.

The following examples should be kept in mind. Let
A={(& neBE>0,nZ 1/E),
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B :={(& n) e 5 >0, n= -1/},
G = {(§, 1) € E*|n = 0}.
These are pairwise disjoint, closed, convex subsets of E2. A and B can
be strictly separated (by G), but not strongly. A — B and o cannot be
strictly separated. A and G can be separated, but not strictly.
On the other hand, convex sets may be separable even if they are not
disjoint. The exact condition is given by the following theorem.

Theorem 1.3.8. Let A, B CE" be nonempty convex sets. Then A and B
can be properly separated if and only if
relint A N relint B = . (%)

Proof. Suppose that (*) holds. Put C :=relint A — relint B. Then o ¢ C,
and C is convex. By Theorem 1.3.4 there exists a hyperplane H,, with
CC Hyp Let
B :=inf{(b, u)|b € B},

then BC H :’5. Suppose there exists a point a € A with (a, u) > . By
Theorem 1.1.12 there exists a point z € relint A, and Lemma 1.1.8 states
that [z, @) CrelintA. Hence, there is a point gerelintA with
(@,u) > B. There is a point b € B with (b, u) < (a,u) and then, by a
similar argument as before, a point b € relint B with (b, u) < (@, u).
Thus 4 — b e C and {(a— b,u) >0, a contradiction. This shows that
ACH,pg Thus A and B are separated by H,z If AU B lies in
some hyperplane, then this argument yields a hyperplane relative to
aff (AU B) separating A and B, and this can be extended to a
hyperplane in E” that properly separates A and B.

Vice versa, let H be a hyperplane properly separating A and B, say
with A C H™ and B C H™. Suppose there exists x € relint A N relint B.
Then x € H. Since A C H™ and x erelint A, we must have A C H,
similarly B C H, a contradiction. Thus (*) holds. | ]

Occasionally we shall have to use support and separation of convex
cones. For these we have:

Theorem 1.3.9. Let C CLE" be a closed convex cone. Each support plane
of C contains o. If x € E"\C, then there exists a vector u € E" such that

(¢, uy 20 forallc € Cand (x, u) <0.

Proof. Let H be a support plane to C. There is a point y € HN C.
Then Ay € C for all A >0, which is impossible if o ¢ H. Hence o€ H.
The rest is clear from Lemma 1.3.1. ]
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We shall now prove two more results in the spirit of the theorems of
Carathéodory and Helly. They are treated in this section since the first
of them needs support planes in its proof and the second one deals with
separation.

Theorem 1.3.10 (Steinitz’s theorem). Let A CE" and x €intconv A.
Then x € intconv A’ for some subset A’ C A with at most 2n points.

Proof. The point x lies in the interior of a simplex with vertices in
convA; hence, by Carathéodory’s theorem applied to each vertex,
x € intconv B for some subset B of A with at most (n + 1)? points. We
can choose a line G through x that does not meet the affine hull of any
n—1 points of B. Let x;, x, be the endpoints of the segment
G Nconv B. By Theorem 1.3.2, through x; there is a support plane H;
to convB (j=1,2). Clearly x;econv(BN H;); hence by Carathéo-
dory’s theorem there is a representation

Xj = Ellﬂy]l Wlth y]l € B, A], = 0, zll‘" =1
i= i=

(j =1,2), and here necessarily A; > 0 by the choice of G. With suitable
A€ (0,1) we have

x=(1-Mx; + ix, = 21[(1 = MDAy + Aoiyal

€ relintconv{yi1, ..., Yip Y21» - - - » Y2u!}
by Theorem 1.1.13. Here relint can be replaced by int, since by the
choice of G the points y;;, ..., ¥, are affinely independent and for at
least one k also yy;, ..., Y10 Y2i are affinely independent. ]

Theorem 1.3.11 (Kirchberger’s theorem). Let A, B C E" be compact sets.
If for any subset M C A U B with at most n + 2 points the sets M N A
and M N B can be strongly separated, then A and B can be strongly
separated.

Proof. First we assume that A and B are finite sets. For x € E” define
(with 7(x) :=(x, 1))
Hi = {veE" x R| = {v, 1(x)) > 0}.

Let MCAUB and card M = n + 2. By the assumption there exist
uelk” and a € R such that (y,a) >a forae MN A and (4, b) <«
for be MN B. Writing v:=(u,—a), we see that (v, 1(a))=
(u,a) —a>0; thus ve Hy for ae MN A. Similarly ve H; for
be MN B. Thus the family {H|lae A}U {H,|b e B} of finitely
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many convex sets in E” X R has the property that any n + 2 or fewer of
the sets have nonempty intersection. By Helly’s theorem, the intersec-
tion of all sets in the family is not empty. Since this intersection is open,
it contains an element of the form v = (u, —&) with u ¥ 0. For a e A
we have v e H, hence {u, a) > a, and for b € B similarly (u, b) < a.
Hence A and B, being finite sets, are strongly separated by H, ,.

Now let A, B be compact sets satisfying the assumption. Suppose that
A and B cannot be strongly separated. Then conv A and conv B cannot
be strongly separated. By Theorem 1.1.10 these sets are compact and
hence by Theorem 1.3.7 they cannot be disjoint. Let x e convA N
conv B. Then x e convA’' NconvB' with finite subsets A'C A and
B’ C B, which hence cannot be strongly separated. This contradicts the
result shown above. |

We conclude this section with another application of a separation
theorem, which will be useful in the study of Minkowski addition.

Lemma 1.3.12. Let A, B CLE" be nonempty convex sets. If
x € relint (A + B),

then x can be represented in the form x = a+ b with a € relint A and
b € relint B.

Proof. There is a representation x =y + z with y € A and z € B. We
may assume that x =y = z =0 and also that dim{(A + B) = n. Since
oeint(A + B), A+ B and o cannot be separated. Hence, by Lemma
1.3.6 and Theorem 1.3.8, there is a point

a € relint A N relint (— B).
Then —a erelintBando=a — a. [}

Notes for Section 1.3

1. Separation and support properties of convex sets in finite and infinite
dimensions are of fundamental importance in various fields such as functional
analysis, optimization, control theory, mathematical economy, and others.
For infinite-dimensional separation and support theorems we refer only to
Bourbaki [9], Marti [25], Holmes (1975) and Bair & Fourneau [3]; see also
the survey article by Klee (1969b).

A thorough study of several types of separation in E* was made by Klee
(1968).

2. A stronger version of Theorem 1.3.3 (existence of local support planes) is
associated with the name of Tietze. A survey of results of this type is given in
the article by Burago & Zalgaller (1978).

3. Historical information on the theorems of Steinitz and Kirchberger can be
found in the survey article by Danzer, Griinbaum & Klee [32].
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4. Positive bases. Let B CE". Using Theorem 1.1.13 one easily sees that
pos B = E" holds if and only if o € intconv B. The set B is called a positive
basis of E" if pos B=[E" but pos B’ + E” for each proper subset B’ C B.
Thus Steinitz’s theorem implies that a positive basis of E” contains at most 2n
vectors. If B is a linear basis of E”, then B U (— B) is a positive basis, and up
to multiplication by positive numbers it is only in this way that the maximal
number 27 can be achieved. Positive bases have been investigated by Davis
(1954), McKinney (1962), Bonnice & Klee (1963), Reay (1965) and Shephard
(1971).

1.4. Extremal representations

The purpose of this section is to represent a closed convex set as the
convex hull of a smaller set, and here the smallest possible sets will be
of particular interest. A first candidate for a smaller set with the same
convex hull is the relative boundary. Only the obvious trivial cases must
be excluded:

Lemmald4.1. If ACE" is a closed convex set with A F convrelbd A,
then A is either a flat or a half-flat.

Proof. Clearly we may assume that dimA = n. There is a point
xeintA with x ¢ convbd A (since otherwise A =intAUbdA =
convbd A). By the separation theorem, 1.3.4, there is a closed halfspace
H~ such that x e H~ and convbd A C H™. Each point y €int H~
satisfies [x, y] N bd A = and hence y eint A; thus H~ C A. By the
convexity and closedness of A, each translate of H~ with a point of A
in its boundary is contained in A. Thus A is either equal to E” or is a
halfspace. |

We will exclude the exceptional cases that are the subject of Lemma
1.4.1 by demanding that A be line-free, meaning that A does not
contain a line. Owing to Lemma 1.4.2 below, this is not a severe
restriction. First let A CE™ be a closed convex set. Suppose that A
contains a ray G, := {x + Au|A =0} with x e E” and u € E"\{o}. Let
yeA. Let z€G,, and w € [x, z). The ray through w with endpoint y
meets G, ,, hence w € A. Thus [x, z) C A and hence z € A. This shows
that also G, , C A. For this reason, it makes sense to define

recA = {u € E"\{0}|G,, C A} U {0}
where x € A; this set does then not depend upon the choice of x. It is

evidently a closed convex cone, called the recession cone of A. One
may also write

recA={uelk"|A+uC A}
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Lemma 1.4.2. Each closed convex set A CE" can be represented in the
form A= A @V, where V is a linear subspace of £ and A is a line-free
closed convex set in a subspace complementary to V.

Proof. Assume that A is not line-free. Then
Vi=recA N (—recA)

(the lineality space of A) is the linear subspace consisting of all vectors
that are parallel to some line contained in A. Let U be a linear
subspace complementary to V and put A := AN U; then 4 + V C A.
Let x € A. Through x there exists a line G C Aj; since it is parallel to
V, it meets U in a point y. Then x =y + (x —y) with y e A and
x—yeV; hence xe A+ V. This proves A=A D V. Clearly A is
closed, convex and line-free. [ |

The representation by convex hulls of minimal sets requires some
definitions. Let A CE” be a convex set. A face of A is a convex subset
F C A such that each segment [x, y] C A with F Nrelint[x, y]+ & is
contained in F or, equivalently, such that x,ye A4 and (x + y)2€¢ F
implies x, y € F. If {z} is a face of A, then z is called an extreme point
of A. In other words, z is an extreme point of A if and only if it cannot
be written in the form z =(1 - A)x + Ay with x,y € A and A€ (0, 1).
The set of all extreme points of A is denoted by ext A. An extreme ray
of A is a ray that is a face of A. By extr A we denote the union of the
extreme rays of A.

Theorem 1.4.3. Each line-free closed convex set A C E" is the convex hull
of its extreme points and extreme rays;

A = conv(ext A U extr A).

Proof. The assertion is clear for n = 1. Suppose that n =2, dmA =n
(w.l.o.g.) and the assertion has been proved for convex sets of smaller
dimension. By Lemma 1.4.1, A = convbd A. By the support theorem,
1.3.2, each point x € bd A lies in some support plane H of A. By the
induction hypothesis, x lies in the convex hull of the extreme points and
extreme rays of H M A, and it is an immediate consequence of the
definition of a face that these are respectively extreme points and
extreme rays of A itself. The assertion follows. |

Corollary 1.4.4. If A CE" is a line-free closed convex set then
A =convextA + recA.



