MANAGING CANAL IRRIGATION
THE WYE STUDIES IN AGRICULTURAL
AND RURAL DEVELOPMENT

The recent publicity given by the media to the problems of malnutrition in deprived parts of the world emphasises the need for up-to-date teaching materials in this subject area. Adopting a multidisciplinary approach, the books in the Wye Studies in Agricultural and Rural Development series are designed for adoption by teachers, students and practitioners in the planning and administration of agricultural and rural development. Also in recognition of this need, the University of London have established a postgraduate programme in Agricultural Development for External Students, and this series of textbooks is being developed in association with their training programme.

The approach of the series is to concentrate on the principles, techniques and applications of policy analysis, planning and implementation for rural development. Texts review and synthesise existing knowledge and highlight current issues, combining academic rigour and topicality with a concern for practical applications. Most importantly, the series provides simultaneously a systematic basis for teaching and study, a means of updating the knowledge of workers in the field, and a source of ideas for those involved in the planning of development projects.

Editorial Board:

MANAGING CANAL IRRIGATION
Practical Analysis from South Asia

ROBERT CHAMBERS
Institute of Development Studies
University of Sussex, UK

CAMBRIDGE UNIVERSITY PRESS
Cambridge New York New Rochelle Melbourne Sydney

© Cambridge University Press www.cambridge.org
For Jenny
Contents

Preface
List of figures
List of tables
Glossary and conventions
Abbreviations

PART I: POVERTY, CANALS AND COMMONSENSE

<table>
<thead>
<tr>
<th>Chapter 1: Potential for the Poor</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poverty in South Asia</td>
<td>4</td>
</tr>
<tr>
<td>Production and livelihoods</td>
<td>5</td>
</tr>
<tr>
<td>Who gains, who loses?</td>
<td>8</td>
</tr>
<tr>
<td>Gains in livelihood</td>
<td>11</td>
</tr>
<tr>
<td>Employment and income</td>
<td>11</td>
</tr>
<tr>
<td>Security against impoverishment</td>
<td>13</td>
</tr>
<tr>
<td>Migration</td>
<td>13</td>
</tr>
<tr>
<td>Quality of life</td>
<td>14</td>
</tr>
<tr>
<td>Canal irrigation in South Asia</td>
<td>16</td>
</tr>
<tr>
<td>Performance</td>
<td>19</td>
</tr>
<tr>
<td>Area irrigated</td>
<td>20</td>
</tr>
<tr>
<td>Waterlogging</td>
<td>21</td>
</tr>
<tr>
<td>Tailend deprivation</td>
<td>21</td>
</tr>
<tr>
<td>Average yields</td>
<td>24</td>
</tr>
<tr>
<td>Potential</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2: Thinking about Canal Irrigation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two questions</td>
<td>28</td>
</tr>
<tr>
<td>Purpose and performance: Objectives and criteria</td>
<td>29</td>
</tr>
<tr>
<td>Productivity</td>
<td>34</td>
</tr>
<tr>
<td>Equity</td>
<td>37</td>
</tr>
<tr>
<td>Stability</td>
<td>38</td>
</tr>
<tr>
<td>Well-being</td>
<td>39</td>
</tr>
<tr>
<td>Perspectives and parts</td>
<td>40</td>
</tr>
<tr>
<td>Domains</td>
<td>41</td>
</tr>
<tr>
<td>Dimensions</td>
<td>42</td>
</tr>
<tr>
<td>Activities and linkages</td>
<td>45</td>
</tr>
</tbody>
</table>
PART II: NORMAL ERROR

Chapter 3: Learning and Mislearning 49
 Mahi-Kadana: seeing parts and missing links 49
 MRP and HBP: failure through success 54
 Islands of salvation 59
 Mohini 59
 NaunangdeShur 62
 Learning and mislearning 63
 Reflections on research 64
 Determinants of research 65
 Approaches 66

Chapter 4: Normal Professionalism 68
 Introduction 68
 The nature of normal professionalism 68
 The challenge of canal irrigation: complexity and transience 71
 Normal irrigation engineering 72
 Engineers and waterlogging: plug, pump and drain 76
 Normal social science 79
 Normal reflexes 88
 The common blind spot 85

Chapter 5: Fixation Below the Outlet 86
 The fixation 86
 Command Area Development in India 87
 New Warabandi 92
 Reasons for error 99
 Observational 99
 Bureaucratic 99
 Professional and territorial 100
 Psychological 100
 A learning process 101

PART III: PROFESSIONAL GAPS AS CENTRES

Chapter 6: Main System Management: The Central Gap 105
 A mental blank 105
 Evidence and opinion 108
 Less water than thought 112
 Pros and cons of water to the tail 116
 Practical political economy: can all gain? 117
 Saving water for later 120
 Bad effects of excess water 120
 The paddy lock-in 121
 Less water better delivered 122
Main system scheduling and delivery 124
Communications 127
 Communication to managers 128
 Communication to farmers 130

Chapter 7: Canal Irrigation at Night 133
Night blindness 134
Scale and importance 135
Night irrigation below the outlet 138
 Farmers’ pluses 138
 Farmers’ minuses 139
 Factors affecting ease and difficulty 140
Above the outlet: control at night 141
Type of conditions 143
Irrigation performance at night 144
 Productivity 144
 Equity 146
 Stability 147

Practical actions 147
 Reducing irrigation at night 147
 without water saving 148
 with water saving 148
 waste and saving 152
 Improving irrigation at night 153
 making flows predictable and manageable 153
 improving convenience and efficiency 153
 choosing easy crops 154
 zoning for night flows 154
 phasing for short nights, warmth and visibility 155

Conclusions 155

Chapter 8: Farmers Above the Outlet 158
The farmers’ frontier: above the outlet 158
 Fact-finding 159
 Local negotiation 159
 Lobbying 160
 Appropriating 161
 Guarding 162
 Operating 163
 Construction, capture and maintenance 165

Spontaneous action analysed 166
 Irrigators’ first priority 166
 The jungle 168
 Group boundaries, cohesion and leadership 168
 Too important for partisan politics 170
 Preconditions for action 171

Farmer joint management 172
 Open meetings 173
Chapter 9: Managers and Motivation

The fourth blind spot 181
Conditions and incentives 183
The transfer trade 185
Effects of corruption 188
Costs to farmers 188
Bad physical work 190
Bad canal management 190
Indiscipline of field staff 191
Demoralisation and distraction 192

Options for reform 193
Vigilance 193
Political reform 193
Discipline 194
Separate O and M cadres 195
Rights and information 198
Incentives and accountability 201
Enhanced professionalism 203

Conclusion 206

PART IV: ANALYSIS AND ACTION

Chapter 10: Diagnostic Analysis: Problems and Approaches

The last blind spot 209
Complicating factors 210
Multiple objectives and criteria 210
Complexity 210
Uniqueness 211
Options for action 211

Some strategic options 212
Land: size of area to be irrigated 212
Location and intensity of irrigation 213
Crop choice and zoning 213
Timing: staggering of cultivation 214
Spatial and temporal cultivation rights 214
Lift irrigation and conjunctive use 215

Modes and tools of analysis 216
Resource-based, top-down 216
Performance-based, bottom-up 217
Key probes 217
Diagrams 219
Modelling 219

Appraisal and diagnostic analysis 221
Multi-disciplinary, below the outlet (WMS) 222
Whole systems (Indian Central Water Commission) 223
RRAs (Bottrall, Potten and Tiffen) 235
Options and techniques for appraisal 226
 Planning, preparation and selection 228
 Existing information 228
 Offsetting tourist biases 228
 Checklists 229
 Interaction and timing 229
 Consultation and considered answers 229
Action, analysis and appraisal 229

Chapter 11: Practical Action 232
 Three false trails 233
 New construction 233
 Calls for coordination 234
 Normal standard programmes 235
 Three points of entry 236
 Operational plans 238
 Rights, communications and farmers’ participation 239
 Performance monitoring and computer analyses 242
 Linkages and sequences 244
 A new professionalism 246
 R and D for gap methodologies 247
 Training 248
 All can act; no need to wait 250

References 253
Index 273
Preface

This book is the outcome of a dozen or so years of fascination and puzzlement with canal irrigation in South Asia and with its management. I hope readers will share the excitement of the subject and be as intrigued as I have been in exploring gaps in knowledge and understanding. Other aspects of rural development are difficult, but none seems at the same time so many-sided and so diverse, and none seems so strikingly to combine potential for reducing poverty with scope for professional change. Canal irrigation management must now present some of the greatest practical and intellectual challenges facing humankind. This book, however modestly, tries to identify and explore some of those challenges and to point towards ways of meeting them. Whether it has been worth writing depends on whether it succeeds in stimulating and encouraging others to use and go beyond what is written here, to improve analysis and action, and above all to manage systems better to serve the poor.

When I first tried to understand irrigation in Sri Lanka and Tamil Nadu in 1973, I expected to find well-developed professional traditions with tested and understood methods for managing canal irrigation systems, and well accepted criteria and techniques for the allocation and distribution of water. I also supposed that ‘management’ when used in the phrase ‘water management’ included the management of whole canal irrigation systems, and of irrigation staff as well as water. Gradually it became clear that this was not so, and that there were gaps in professional knowledge and methods. At first this was difficult to believe, and it was hard to muster the courage to assert the existence of these gaps. But it became more and more obvious with time that the main preoccupations of each profession were narrow. Whatever the rhetoric and appearances, no profession, not even irrigation engineering, had the actual management of canal irrigation systems as the core of its professional training and concerns.

So the subtitle of this book might have been ‘in search of reality’ or ‘exploring gaps’. For much of it is about knowing and not knowing, and about what the literature and normal professional training have left out. Exploring gaps and blind spots has been difficult, but rewarded by a sense of discovery. Analysis, writing and rewriting have taken longer than planned. As with irrigation projects themselves, so with this book, there have been completion delays and cost overruns. Modernisation and
rehabilitation were also needed before construction was complete. Partly this resulted from the rapid growth in published and unpublished literature which had some relevance, even if this was often tangential. What began as a drizzle of papers became a downpour, and it has been a struggle not to drown in the resulting flood of documentation.

The five gaps or blind spots I examine are of practical concern: main system management; canal irrigation at night; farmers’ activities above the outlet; managers and motivation; and diagnostic analysis. They are gaps because they are difficult. The experience that is relevant is poorly recorded; good methods are not well known; and there are still no relevant textbooks.

In choosing these five topics I have deliberately treated other subjects lightly. Two deserve mention. The first is farmer participation below the outlet (but see parts of Chapter 5, and Chapter 8 for participation above the outlet). Farmers’ participation is being developed and studied in many countries, not least the Philippines, Sri Lanka, Nepal and India, and is the subject of Norman Uphoff’s analysis and state of the art review *Improving International Irrigation Management with Farmers’ Participation: Getting the Process Right* (Westview Press, Boulder, Colorado, 1986).

The second is financial aspects. Large irrigation projects in South Asia are heavily subsidised, both in their capital costs, which are borne by the State, and in their recurrent costs. Typically, irrigation fees paid by cultivators cover only a small fraction of recurrent costs. The question is whether more of these costs can be transferred to cultivators.

It is now fashionable to try to combine these two aspects, participation with payment. As earlier in other domains of rural development, cooperatives are to be created to undertake tasks which are too difficult for officials and too unpopular for politicians. Water is to be wholesaled to groups of farmers who will distribute the water and its costs among themselves, collect the payments due, and hand them over to an irrigation agency which becomes self-financing. South Asian countries may have much to learn from new practices in the Philippines where fee-collection and maintenance have been devolved to farmers over extensive areas, and performance incentives devised for staff. Similar changes will be a bigger challenge in the more hierarchical conditions of India. Courage and caution will be needed, avoiding new big standardised programmes and guarding against new myths.

In order to concentrate on certain major gaps, I have also consciously not emphasised some other dimensions or bodies of evidence. Most of the material drawn on is from India, Sri Lanka, and the Philippines. Within India, I have not stressed regional variations nor the differences between paddy and wheat irrigation, nor the vast subject of drainage. I have also avoided the heartlands of the major disciplines. The book is not about the normal concerns of any profession or discipline except as a means of showing why gaps and blind spots exist. It is thus not primarily about the design, construction and maintenance of the irrigation
engineering profession, nor the on-farm development of agricultural engineers, nor the crop water requirements and irrigation scheduling of agronomists, not the cost-benefit and financial analyses of economists, nor the farmer participation at field level of sociologists, nor the coordination of administrators. It is about what all these miss. And it argues that what they miss is central for improving canal irrigation management. For these reasons, the book is addressed to a wide audience, to all those concerned with understanding canal irrigation and improving its performance, regardless of their profession or discipline. It is written for civil engineers, agricultural engineers, agronomists, hydrologists, sociologists and economists; for administrators, planners, politicians and policy-makers; for staff in government departments and in aid agencies; for academics, teachers and trainers; and above all for those tens of thousands of professionals in South Asia and many other parts of the world, who manage canal irrigation systems.

The text is organised into four parts. Part I sets the scene. Chapters 1 and 2 give background context and rationale, the scale of canal irrigation in South Asia, the potential for benefiting the rural poor, and analysis of the purposes and nature of canal irrigation systems. In Part II, Chapters 3, 4 and 5 are concerned with learning and mismeasuring, and prescription and misprescription. Part III analyses four gaps or blind spots with a chapter on each. Finally, Part IV gets to grips with what to do. To enable the reader to move quickly and easily through the book the table of contents includes all the main sub-headings, and there is a summary at the start of each chapter. By reading these summaries, the main thrusts of the book can be grasped in a matter of minutes.

The reader may wonder what an Englishman is doing writing about canal irrigation in South Asia. I have wondered myself. At one level I share with some irrigation engineers and hydrologists a fascination with the control of flowing water on the origins of which psychologists are welcome to speculate. As a more obvious level, I first stumbled on canal irrigation in South Asia while working on a joint research project of Cambridge University, Madras University and the Agrarian Research and Training Institute, Colombo on agrarian change in Tamil Nadu and Sri Lanka. The Wirawila tank and its irrigation system in Hambantota District in Sri Lanka were a first love. Later three and a half years with the Ford Foundation in Delhi provided an opportunity to learn more about canal irrigation in India, stimulated by visits, conferences and workshops and the shared enthusiasm of colleagues in institutions in India. Finally, grants from the Ford and Rockefeller Foundations to the Institute of Development Studies at the University of Sussex have given me the time to read, analyse, correspond, and write this book. These two grants have also subsidised publication to make the book available at a low price which I hope will make it accessible to those for whom it is written. As ever, and grateful though I am for the support of all concerned, the responsibility for errors of fact and judgement is mine alone, and the views expressed are mine and not necessarily those of others or of any organisation.
xvi

That said, this book is really a collective effort. The many whom I thank for their contributions through support, collaboration, criticism, information and insight include:

To anyone inadvertently omitted, I apologise.

I owe special, thanks to the women, landless labourers and small farmers at the tailends of canal irrigation systems for their outspoken comments, which have given impetus and justification for this book. To them let me add all those unnamed farmers, officials, researchers and colleagues who have also helped. For the inspiration of his life and work, and showing what can be done, I owe a very special debt to Syed Hashim Ali, who also first pointed out to me the importance of canal irrigation at night. For encouragement and giving me time and freedom to work on canal irrigation, I thank B.H. Farmer for his part in the 1970s, Norman Collins for his in the 1980s, and colleagues in the Cambridge University Project on Agrarian Change in South Asia, the Ford Foundation, Delhi, and the Institute of Development Studies at the University of Sussex. For the time and care they gave to commenting on the draft as a whole, or on substantial sections, I am most grateful to Anthony Bottrall, Max Lowdermilk, Douglas Merrey, Mick Moore, Nirajan Pant, R.K. Patil, Mary Sanders, Bharat Singh, K.K. Singh, and Mary Tiffen. For generously sharing their unpublished research results, I thank Upendra Nath Kamalpuri, Shashi Kolavalli, and Priti Ramamurthy. My greatest debt is to Roberto Lenton as colleague and friend, for many discussions, for joint field visits, for much encouragement, and for seeing that gaps and blind spots should be the core of the book.
Permission is acknowledged with thanks for the use of material which has appeared earlier. Parts of Chapter 1 were the basis for a paper ‘Irrigation against Rural Poverty’ to the Seminar on Water Management—the Key to Development of Agriculture, organised by the Indian National Science Academy, New Delhi, on 28-30 April 1986; much of Chapter 7 appeared as ‘Canal Irrigation at Night’, in Irrigation and Drainage Systems, I(1986), pp 45–74; much of Chapter 8 was published as ‘Farmers above the Outlet: Irrigators and Canal Management in South Asia’, Journal of Indian Water Resources Society, Vol 6 Nos 3 and 4, 1986; and finally Chapter 10 draws on parts of ‘Rapid Appraisal for Improving Existing Canal Irrigation Systems’, Discussion Paper Series No. 8, Ford Foundation, Delhi, August 1983, and on a paper written jointly with Ian Carruthers ‘Rapid Appraisal to Improve Canal Irrigation Performance: Experience and Options’, HMI Research Paper No. 3, October 1986, published by the International Irrigation Management Institute.

Last, but not least, let me thank those who have borne the brunt of typing and retyping the text. They include Julia Cross, Jane Deakin, Beverley Harries, Danielle Hodges, Marion Huxley, Susan Kent, I.D. Khurana, Helen McLaren, Susan Saunders and Ann Watson.

This book is only one very small part of a larger movement. On a wide scale, professionals are searching for more cost-effective, productive, equitable and stable ways to manage canal irrigation systems. We do not know how successful the search will be. Let us hope that by the twenty-first century, methods and practices will have so developed and changed that any historian finding a dusty and faded copy of this book will wonder what in the mid 1980s we still did not know, and at the methodologies and textbooks we still did not have. But such a person, looking back, will only wonder at our ignorance if there has been much change in the meantime; and that may or may not occur. It depends on practical exploration of the gaps. It depends on extending the boundaries of normal professionalism. It depends on the writing of textbooks. It depends on decisions and actions by people.

Let me end then with the hope that what is written here will so provoke, encourage and support others that they will take action. For this book tries to indicate what needs to be done and can be done. The gaps belong to no one, and yet to everyone. By making them centres more of the huge potential of canal irrigation for reducing poverty can be realised. Perhaps the book’s conclusion bears repeating. All can do something. And there is no need to wait.
List of Figures

1.1. Average number of days of employment of adult male casual labourers on agricultural work in two West Bengal villages 12

2.1. Criteria, objectives and beneficial causal chains 32

2.2. Criteria and objectives 33

2.3. Typical points of input and output measurements for different professions and disciplines 35

2.4. Core flows in canal irrigation systems 36

2.5. Parts of a canal system illustrating the headreach of a river diversion system 43

2.6. A command area with typical water distribution problems 44

2.7. Domains and linkages of a canal irrigation system 44

10.1. Performance monitoring and feedback 218

10.2. Illustration of some purposes and methods of appraisal 227

11.1. Three points of entry for improving performance 237

11.2. Points of entry by performance level and system size 245
List of Tables

1.1. GNP per caput and population: five Asian countries 4
1.2. Production-thinking and livelihood-thinking contrasted 7
1.3. Indirect gains and losses of the land-poor from irrigation 9
1.4. Area reported irrigated in five Asian countries 17
1.5. Irrigation potential created by type of irrigation: indications of orders of magnitude for India and Pakistan 18
1.6. Irrigation expansion and potential in India 18
1.7. Yields and incomes on a headreach and a tailreach minor, Gambhiri Project 23
1.8. Net returns per family labour day by canal location, Gal Oya Project 23
1.9. Average foodgrain yields per unirrigated hectare and per net irrigated hectare by irrigation source in four Indian States 25
1.10. Output impact of groundwater, canals and tanks 1977-79 25
2.1. Criteria of good system performance according to type of person 30
2.2. Common patterns of water availability and use 45
3.1. Three studies of Mahi-Kadana Right Bank Command area 51
3.2. Details of trial and control chaks, MRP and HBP 56
3.3. Trial and control inputs and yields, MRP and HBP 58
4.1. Professional values and preferences 70
4.2. Content of an irrigation engineering textbook 72
4.3. Some remedies prescribed for waterlogging on canal irrigation systems 77
4.4. Problem and opportunity orientations 83
4.5. Normal professional problems, solutions and neglected needs or opportunities 84
xxii

6.1. Increased area reported irrigated with systematic canal operation on four majors in Andhra Pradesh 110
6.2. Some reported transmission losses 114
6.3. Shortfalls in duration of irrigation flows, Lower Bhavani Project 114
7.1. Estimated hours of darkness, North and South India 136
7.2. System conditions and day and night activities 143
7.3. Conditions in which night flows are saved for use 152
9.1. Illustrative orders of magnitude of some unofficial payments and revenues 187
9.2. Characteristics of investigation, design, construction and O and M: some hypotheses 192
9.3. Views indicated by irrigation engineers on Mahi-Kadana and Panam Projects, Gujarat 204
10.1. Relative costs, durations and difficulties of action research and modelling by location on a system 221
11.1. Gap methodologies by chapters and pages 247
Glossary and Conventions

Most references in the text give year of publication followed by page number(s), e.g. Early 1981: 14. Where there is no page number, the reference is normally to a major theme of the work in question which is not limited to one or a few pages.

The senses in which terms are used in this book include the following:

- **allocation**: the assignment of rights or allotments of water to water users, either individually or grouped
- **anicut**: a dam or weir to divert river water into a channel
- **appropriation**: the act of acquisition of water
- **ayacut**: the irrigable command of an irrigation work
- **chak**: the irrigable area below an outlet, normally under the control of cultivators, and consisting of watercourses, field channels where they exist, fields, field drains, and chak drains. The chak is sometimes known as the unit command area
- **communal system**: an irrigation system managed by the irrigators
- **convenient**: (of a water supply) manageable, hassle-free, timely, cheap and profitable. In this book convenient means convenient for irrigators
- **crore**: ten million
- **Culturable Commanded Area (CCA)**: the area of culturable land in a command area.
 (For this and related definitions in more detail see Bharat Singh 1979: 38-39 and Michael 1978: 36)
- **cusecs**: cubic feet per second
- **delivery**: distribution through the controlled movement of water from a point of origin (such as a diversion weir or reservoir) to a point or points of handover
channel taking off from a main or branch canal, usually supplying water to minors and also directly to chaks through outlets.

usually larger river diversion or reservoir-based gravity irrigation systems with a dual or split management, with the upper parts managed mainly by a staff recruited, paid and disciplined by an external organisation and the lower parts managed mainly by irrigators. Sometimes also known as bureaucratic-communal or jointly managed systems.

(of water delivery) the ratio of water delivered at one point to water released from another point.

recurrent officially recognised management activities above the outlet on canal irrigation systems, involving both farmers and irrigation staff.

channel carrying water from a watercourse to individual fields. (Field channels are often absent with paddy field-to-field irrigation.)

the area below the outlet on a canal irrigation system. Also known as the chak level.

area of land irrigated in a year (two irrigation seasons counting as two).

enhancing wellbeing by increasing benefits from canal irrigation, including those from productivity, equity and stability, in relation to costs, including financial costs and adverse social, health, environmental and other effects.

in North India, this means the proportion of Culturable Commanded Area proposed to be annually irrigated. In this book it is used as a percentage to describe the ratio of irrigated to irrigable area (two irrigation seasons on the same land counting as two).

the summer southwest monsoon season in India with onset of rain mainly in May and June, and withdrawal of rain mainly in September.

one hundred thousand

irrigation where water is pumped up before distribution. Groundwater is the most common source, but water is also lifted from reservoirs, canals, drains and other sources.
maha

great, the northeast monsoon cultivation season in Sri Lanka

main system

the canal irrigation system above the outlet, including diversion works, reservoirs, dams, main canals, branch canals, distributaries and minors, and drainage works below the chak level

minor

the lowest level of channel on a main system, below a distributary, and with outlets giving onto chaks. Also known as a ‘minor distributary’. In India minors usually carry discharges of less than 10 cusecs (0.283 cubic metres/second). Minors take off from distributaries and branch canals and rarely from the main canal

net irrigated area

area of land surface that receives irrigation water in a year (two irrigation seasons counting as one)

night

the period of darkness from 20 minutes after sunset to 20 minutes before dawn, regardless of whether there is a moon

on-farm development

development below the outlet, in the chak

outlet

the structure on a distributary or minor through which water passes to watercourses and field channels. The outlet (mogha in Pakistan) is normally the official point at which water passes from the control of irrigation staff to farmers, separating the main system from the chak level.

performance

see ‘improving performance’

predictable

(of a water supply) assured, known to be assured, and known about in advance as to timing, flow rate(s) and quantity. A water supply is more, or less, predictable to the extent that these conditions are met. In this book, predictable means predictable to irrigators

rabi

the ‘winter’ cropping season

scheduling

planning the distribution of water including specifying allocations, preparing timetables for amounts of water and locations, and making adjustments to these

seepage

the infiltration of water downwards or laterally into soil or substrata from a source of supply such as reservoir or irrigation canal or channel
xxvi

shramadana communal labour
watercourse channel leading from an outlet and supplying field channels or fields directly
warabandi (a) northwest Indian warabandi: the system of water distribution and rights found in northwest India (Punjab, Haryana, Rajasthan, and parts of western Uttar Pradesh) where canal design and regulation permit near-constant flow of water through ungated outlets, the flow being allocated to cultivators at fixed times with duration of turn proportional to landholding area
(b) new warabandi: warabandi introduced, or attempted to be introduced, elsewhere in India
yala little, the southwest monsoon cultivation season in Sri Lanka
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>Assistant Engineer (junior to an Executive Engineer)</td>
</tr>
<tr>
<td>CADA(s)</td>
<td>Command Area Development Authority(ies)</td>
</tr>
<tr>
<td>CAD</td>
<td>Command Area Development and the Command Area Development Programme</td>
</tr>
<tr>
<td>CCA</td>
<td>Culturable Commanded Area</td>
</tr>
<tr>
<td>CE</td>
<td>Chief Engineer (senior to a Superintending Engineer)</td>
</tr>
<tr>
<td>CWC</td>
<td>Central Water Commission (India)</td>
</tr>
<tr>
<td>DIY</td>
<td>Do It Yourself</td>
</tr>
<tr>
<td>EE</td>
<td>Executive Engineer (junior to a Superintending Engineer, senior to an Assistant Engineer)</td>
</tr>
<tr>
<td>ET</td>
<td>Evapotranspiration</td>
</tr>
<tr>
<td>RJM</td>
<td>Farmer Joint Management</td>
</tr>
<tr>
<td>GOI</td>
<td>Government of India</td>
</tr>
<tr>
<td>HBP</td>
<td>Hasdeo Bango Project, Madhya Pradesh</td>
</tr>
<tr>
<td>IAS</td>
<td>Indian Administrative Service</td>
</tr>
<tr>
<td>ICID</td>
<td>International Commission on Irrigation and Drainage</td>
</tr>
<tr>
<td>ID</td>
<td>Irrigated Dry, meaning zoned for irrigation for non-paddy crops, (as opposed to Irrigated Wet) (South India)</td>
</tr>
<tr>
<td>IFAD</td>
<td>International Fund for Agricultural Development</td>
</tr>
<tr>
<td>IIMI</td>
<td>The International Irrigation Management Institute, with its headquarters at Digana, near Kandy, Sri Lanka</td>
</tr>
<tr>
<td>IRDP</td>
<td>Integrated Rural Development Programme (India)</td>
</tr>
<tr>
<td>IRRI</td>
<td>International Rice Research Institute, Philippines</td>
</tr>
<tr>
<td>IW</td>
<td>Irrigated Wet, meaning zoned for paddy (as opposed to Irrigated Dry) (South India)</td>
</tr>
<tr>
<td>IWM</td>
<td>Integrated Water Management, a programme in Andhra Pradesh integrating water management above and below the outlet</td>
</tr>
<tr>
<td>LTRIS</td>
<td>Lower Talavera River Irrigation System (Philippines)</td>
</tr>
<tr>
<td>M and E</td>
<td>Monitoring and Evaluation</td>
</tr>
<tr>
<td>MLA</td>
<td>Member of Legislative Assembly</td>
</tr>
<tr>
<td>MRB</td>
<td>Mahi Right Bank, a command area in Gujarat</td>
</tr>
<tr>
<td>MRP</td>
<td>Mahanadi River Project, Madhya Pradesh</td>
</tr>
<tr>
<td>MSM</td>
<td>Main system management</td>
</tr>
<tr>
<td>NIA</td>
<td>National Irrigation Administration, Philippines</td>
</tr>
<tr>
<td>NWMP</td>
<td>National Water Management Project (India)</td>
</tr>
</tbody>
</table>
xxviii

O and M Operation and Maintenance (occasionally also Organisation and Management)

OFD on-farm development

PENRIS Penaranda River Irrigation System (Philippines)

PWD Public Works Department

RWS Rotational water supply (similar to warabandi)

SCO Systematic canal operation (India)

SE Superintending Engineer (junior to a Chief Engineer and senior to an Executive Engineer)

t/ha Tonnes per hectare

USAID United States Agency for International Development

WAPCOS Water and Power Consultancy Services (Delhi)

WAPDA Water and Power Development Authority (Pakistan)

WDR World Development Report, published annually by the World Bank

WMSP Water Management Synthesis Project, funded by USAID

WTC The Water Technology Centre at the Indian Agricultural Research Institute, Delhi

WUA Water Users' Association (especially in Taiwan)