Solitons: an Introduction
Cambridge texts in applied mathematics

Maximum and minimum principles: a unified approach with applications
M. J. SEWELL

Introduction to numerical linear algebra and optimization
P. G. CIARLET

Solitons: an introduction
P. G. DRAZIN AND R. S. JOHNSON

Integral equations: from spectral theory to applications
D. PORTER AND DAVID S. G. STIRLING

Perturbation methods
E. J. HINCH
Solitons: an Introduction

P. G. DRAZIN
Professor of Applied Mathematics, University of Bristol

R. S. JOHNSON
Senior Lecturer in Applied Mathematics
University of Newcastle upon Tyne
To Judith and Rosalind
Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>page</th>
<th>xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The Korteweg–de Vries equation</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Preliminaries</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>The discovery of solitary waves</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>The discovery of soliton interactions</td>
<td>12</td>
</tr>
<tr>
<td>1.4</td>
<td>Applications of the KdV equation</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Further reading</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>Elementary solutions of the Korteweg–de Vries equation</td>
<td>20</td>
</tr>
<tr>
<td>2.1</td>
<td>Travelling-wave solutions</td>
<td>20</td>
</tr>
<tr>
<td>2.2</td>
<td>Solitary waves</td>
<td>21</td>
</tr>
<tr>
<td>2.3</td>
<td>General waves of permanent form</td>
<td>22</td>
</tr>
<tr>
<td>2.4</td>
<td>Description in terms of elliptic functions</td>
<td>26</td>
</tr>
<tr>
<td>2.5</td>
<td>Limiting behaviours of the cnoidal wave</td>
<td>29</td>
</tr>
<tr>
<td>2.6</td>
<td>Other solutions of the KdV equation</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Further reading</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td>The scattering and inverse scattering problems</td>
<td>39</td>
</tr>
<tr>
<td>3.1</td>
<td>Preamble</td>
<td>39</td>
</tr>
<tr>
<td>3.2</td>
<td>The scattering problem</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Example (i): the delta function</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Example (ii): the sech² function</td>
<td>45</td>
</tr>
<tr>
<td>3.3</td>
<td>The inverse scattering problem</td>
<td>48</td>
</tr>
<tr>
<td>3.4</td>
<td>The solution of the Marchenko equation</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Example (i): reflection coefficient with one pole</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Example (ii): zero reflection coefficient</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Further reading</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>61</td>
</tr>
</tbody>
</table>
4 The initial-value problem for the Korteweg–de Vries equation 64
4.1 Recapitulation 64
4.2 Inverse scattering and the KdV equation 65
4.3 Time evolution of the scattering data 67
 4.3.1 Discrete spectrum 68
 4.3.2 Continuous spectrum 70
4.4 Construction of the solution: summary 71
4.5 Reflectionless potentials 72
 Example (i): solitary wave 73
 Example (ii): two-soliton solution 74
 Example (iii): N-soliton solution 78
4.6 Description of the solution when $b(k) \neq 0$ 81
 Example (i): delta-function initial profile 81
 Example (ii): a negative sech2 initial profile 83
 Example (iii): a positive sech2 initial profile 83
Further reading 86
Exercises 86

5 Further properties of the Korteweg–de Vries equation 89
5.1 Conservation laws 89
 5.1.1 Introduction 89
 5.1.2 An infinity of conservation laws 92
 5.1.3 Of Lagrangians and Hamiltonians 95
5.2 Lax formulation and its KdV hierarchy 97
 5.2.1 Description of the method: operators 97
 5.2.2 The Lax KdV hierarchy 99
5.3 Hirota’s method: the bilinear form 102
 5.3.1 The bilinear operator 103
 5.3.2 The solution of the bilinear equation 106
5.4 Bäcklund transformations 109
 5.4.1 Introductory ideas 110
 5.4.2 Bäcklund transformation for the KdV equation 112
 5.4.3 The KdV Bäcklund transformation: an algebraic relation 114
 5.4.4 Bäcklund transformations and the bilinear form 116
Further reading 118
Exercises 118

6 More general inverse methods 127
6.1 The AKNS scheme 128
 6.1.1 The 2×2 eigenvalue problem 128
Contents

6.1.2 The inverse scattering problem 131
6.1.3 An example: \(r = -q, q = \lambda \text{ sech } \lambda x \) 134
6.1.4 Time evolution of the scattering data 137
6.1.5 The evolution equations for \(q \) and \(r \)
 (a) Quadratic in \(\zeta \) 141
 (b) Polynomial in \(\zeta^{-1} \) 142
 (c) General function of \(\zeta \) 143
6.2 The ZS scheme 144
 6.2.1 The integral operators 144
 6.2.2 The differential operators 146
 6.2.3 Scalar operators
 (a) The KdV equation 149
 (b) The two-dimensional KdV equation 151
 6.2.4 Matrix operators
 (a) The nonlinear Schrödinger equation 152
 (b) The sine–Gordon equation 154
6.3 Two examples
 Example (i): The nonlinear Schrödinger equation 157
 Example (ii): The sine–Gordon equation 160
 Further reading 162
 Exercises 162

7 The Painlevé property, perturbations and numerical methods 169
7.1 The Painlevé property 169
 7.1.1 Painlevé equations 169
 7.1.2 The Painlevé conjecture 171
 7.1.3 Linearisation of the Painlevé equations 172
7.2 Perturbation theory 174
 7.2.1 Perturbation theory: an example 177
7.3 Numerical methods 180
 7.3.1 Spectral methods 182
 7.3.2 Finite-difference methods 183
 7.3.3 Long-wave equations 184
 7.3.4 Nonlinear Klein–Gordon equations 186
 7.3.5 The nonlinear Schrödinger equation 187
 Further reading 187
 Exercises 187

8 Epilogue 190
8.1 Some numerical solutions of nonlinear evolution equations 190

Contents

8.2 Applications of nonlinear evolution equations 196

Further reading 200

Exercises 201

Answers and hints 205

Bibliography and author index 213

Motion picture index 220

Subject index 221
Preface

The theory of solitons is attractive and exciting; it brings together many branches of mathematics, some of which touch on deep ideas. Several of its aspects are amazing and beautiful; we shall present some of them in this book. The theory is, nevertheless, related to even more areas of mathematics, and has even more applications to the physical sciences, than the number which are included here. It has an interesting history and a promising future. Indeed, the work of Kruskal and his associates which gave us the ‘inverse scattering transform’ – a grand title for soliton theory – is a major achievement of twentieth-century mathematics. Their work was stimulated by a physical problem together with some surprising computational results. This is a classic example of how numerical results lead to the development of new mathematics, just as observational and experimental results have done since the time of Archimedes.

This book has grown out of Solitons written by one of us (PGD). That book originated from lectures given to final-year mathematics honours students at the University of Bristol. Much of the material in this version has also been used as the basis for an introductory course on inverse scattering theory given to MSc students at the University of Newcastle upon Tyne. In both courses the aim was to present the essence of inverse scattering clearly, rather than to develop the theory rigorously and completely. That is also the overall aim of this book. It is intended for senior undergraduate students, and postgraduate students, in physics, chemistry, and engineering, as well as mathematics. The book will also help specialists in these and other fields to learn the theory of solitons. However, the theory is not taken as far as the rapidly advancing frontiers of research.

This book introduces the fundamental ideas underlying the inverse scattering transform from the point of view of a course of advanced calculus or the methods of mathematical physics. Some knowledge of the elements of the theories of linear waves, partial differential equations, Fourier integrals, the calculus of variations, Sturm–Liouville theory and
Preface

the hypergeometric function, but little more, is assumed. Also, some familiarity with the main ingredients of the theories of water waves, continuous groups, elliptic functions and Hilbert spaces will be useful, but is not essential. The relevant ideas from one-dimensional wave mechanics (both scattering and inverse scattering), necessary for the presentation of the inverse scattering transform, are described. References are given in the text (or at the end of each chapter) to help readers to learn more of the foregoing topics. Some of the diverse applications of the theory of solitons are mentioned only briefly, either in the main text, or in the exercises at the end of each chapter. However, the Korteweg–de Vries equation is derived for a water-wave problem.

The material is presented as simply as we can, and a number of worked examples are also used to help the reader follow the various ideas. Of course, some parts of the theory are more exacting than others, and some problems are more difficult than others. The more difficult sections, paragraphs and set problems are indicated by asterisks; these passages may be omitted on a first reading of the book. Further reading is offered at the end of each chapter to direct the reader to more detailed treatments of some of the topics. The sections are numbered according to the decimal system, and the equations are numbered according to the chapter in which they appear, e.g. equation (1.2) is equation 2 of Chap. 1. The exercises are similarly numbered (e.g. Q1.2), as are the answers (e.g. A1.2) at the end of the book.

We are grateful to Miss Sarah Trickett (Figs. 4.5, 4.7, 4.8), Mr Mark Lewy (Fig. 8.1), Dr Adam Wheeler (Fig. 8.2), Mr Gregory Jones (Figs. 8.3, 8.4, 8.6, 8.7) and Dr Stephen Thompson (Figs. 8.8, 8.9) for their computations and plots of solutions on which our figures have been based; to Miss Carolyn Pharoah and Miss Alison Davies for their clear draughtsmanship of the figures; to Professor Neil Freeman (various points) and Dr Andrew Wathen (§7.3) for technical advice; to Academic Press (copyright of Figs. 8.8, 8.9); and to Mrs Heather Bliss, Mrs Hilary Cartwright and Mrs Nancy Thorp for their careful and cheerful typing of the text.

We have corrected some misprints and errors in the 1990 reprint and in the present one. We are grateful to Prof. P. S. Landweber for suggesting several of these improvements.

Bristol
Newcastle upon Tyne

PGD
RSJ