LONDON MATHEMATICAL SOCIETY STUDENT TEXTS

Managing Editor: Professor E.B. Davies, Department of Mathematics, King's College, Strand, London WC2R 2LS, England

1 Introduction to combinators and lambda-calculus, J.R. HINDLEY & J.P. SELDIN
2 Building models by games, WILFRID HODGES
3 Local fields, J.W.S. CASSELS
4 An introduction to twistor theory, S.A. HUGGETT & K.P. TOD
5 Introduction to general relativity, L. HUGHSTON & K.P. TOD
6 Lectures on stochastic analysis: diffusion theory, DANIEL W. STROOCK
London Mathematical Society Students Texts. 6

Lectures on Stochastic Analysis: Diffusion Theory

DANIEL W. STROOCK
Massachusetts Institute of Technology
CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521333665

© Cambridge University Press 1987

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 1987
Re-issued in this digitally printed version 2008

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data
Stroock, Daniel W.
 Lectures on stochastic analysis
(London Mathematical Society Student Texts; 6)
 Includes index.
 1. Diffusion processes. I. Title. II. Series.
 QA274.75.S85 1987 519.2'33 86-20782

ISBN 978-0-521-33366-5 hardback
ISBN 978-0-521-33645-1 paperback
Contents

Introduction vii

1 Stochastic processes and measures on function space 1
1.1 Conditional probabilities and transition probability functions 1
1.2 The weak topology 4
1.3 Constructing measures on $C([0,\infty) ; \mathbb{R}^N)$ 12
1.4 Wiener measure, some elementary properties 15

2 Diffusions and martingales 19
2.1 A brief introduction to classical diffusion theory 19
2.2 The elements of martingale theory 27
2.3 Stochastic integrals, Ito's formula and semi-martingales 49

3 The martingale problem formulation of diffusion theory 73
3.1 Formulation and some basic facts 73
3.2 The martingale problem and stochastic integral equations 87
3.3 Localization 101
3.4 The Cameron-Martin-Girsanov transformation 106
3.5 The martingale problem when a is continuous and positive 112

Appendix 120

Index 127
Introduction

These notes grow out of lectures which I gave during the fall semester of 1985 at M.I.T. My purpose has been to provide a reasonably self-contained introduction to some stochastic analytic techniques which can be used in the study of certain analytic problems, and my method has been to concentrate on a particularly rich example rather than to attempt a general overview. The example which I have chosen is the study of second order partial differential operators of parabolic type. This example has the advantage that it leads very naturally to the analysis of measures on function space and the introduction of powerful probabilistic tools like martingales. At the same time, it highlights the basic virtue of probabilistic analysis: the direct role of intuition in the formulation and solution of problems.

The material which is covered has all been derived from my book [S.&V.] (Multidimensional Diffusion Processes, Grundlehren #233, Springer-Verlag, 1979) with S.R.S. Varadhan. However, the presentation here is quite different. In the first place, the emphasis there was on generality and detail; here it is on conceptual clarity. Secondly, at the time when we wrote [S.&V.], we were not aware of the ease
with which the modern theory of martingales and stochastic integration can be presented. As a result, our development of that material was a kind of hybrid between the classical ideas of K. Itô and J.L. Doob and the modern theory based on the ideas of P.A. Meyer, H. Kunita, and S. Watanabe. In these notes the modern theory is presented; and the result is, I believe, not only more general but also more understandable.

In Chapter I, I give a quick review of a few of the important facts about probability measures on Polish spaces: the existence of regular conditional probability distributions and the theory of weak convergence. The chapter ends with the introduction of Wiener measure and a brief discussion of some of the basic elementary properties of Brownian motion.

Chapter II starts with an introduction to diffusion theory via the classical route of transition probability functions coming from the fundamental solution of parabolic equations. At the end of the first section, an attempt is made to bring out the analogy between diffusions and the theory of integral curves of a vector field. In this way I have tried to motivate the formulation (made precise in Chapter III) of diffusion theory in terms of martingales, and, at the same time, to indicate the central position which martingales play in stochastic analysis. The rest of Chapter II is devoted to the elements of martingale theory and the development of stochastic integration theory. (The presentation here profitted considerably from the
incorporation of some ideas which I learned in the lectures given by K. Itô at the opening session of the I.M.A. in the fall of 1985.)

In Chapter III, I formulate the martingale problem and derive some of the basic facts about its solutions. The chapter ends with a proof that the martingale problem corresponding to a strictly elliptic operator with bounded continuous coefficients is well-posed. This proof turns on an elementary fact about singular integral operators, and a derivation of this fact is given in the appendix at the end of the chapter.