This book presents a collection of analog electronic circuits based on the op amp, supported by a wealth of practical and technical detail which will enable the reader speedily to select, build and test a desired circuit.

The book is primarily intended to be a practical reference volume rather than a teaching text. Both students and professional engineers will discover in its pages an extensive and invaluable source of functional and established analog circuits, from integrators and differentiators to logarithmic amplifiers; from instrumentation amplifiers to filters. The circuits are conveniently grouped according to function, and the approach followed is to build up slowly from the basic textbook examples towards a series of practical, workable circuits.

Students who need to build and test particular types of analog circuitry as part of an assignment or project based activities will find this book invaluable. Professional engineers will also find the book useful for design and development work. The coverage is extensive and up-to-date, and provides a wealth of expert, technical advice on the selected circuits.
Analog Electronics with Op Amps
Contents

Preface xi

1 Instrumentation amplifiers 1
1.1 Single op amp instrumentation amplifiers 2
1.2 Two op amp instrumentation amplifiers 6
1.3 Three op amp instrumentation amplifiers 8
1.4 Matched transistor instrumentation amplifiers 12
1.5 Using instrumentation amplifiers with transducers 18
1.6 Commercial single ic instrumentation amplifiers 18

2 Isolation amplifiers 25
2.1 Isolation amplifier using modulation and demodulation 26
2.2 Isolation amplifier using linearizing feedback 27
2.3 Commercial isolation amplifiers 30

3 Charge amplifiers 31
3.1 Current integrating charge amplifier 31
3.2 High input impedance charge amplifier 34

4 Current-to-voltage and voltage-to-current converters 37
4.1 A simple current-to-voltage converter 37
4.2 A current-to-voltage converter using a single op amp 38
4.3 Voltage-to-current conversion using a single op amp 43
4.4 A unipolar transconductance amplifier 48
4.5 A differential input voltage-to-current converter 52
4.6 Operational transconductance amplifiers 55

5 Controlled amplifiers 59
5.1 Some approaches to voltage controlled amplification 59
5.2 Commercial voltage controlled amplifiers 61
5.3 Automatic gain control (AGC) 62
5.4 Digitally controlled amplifiers 63

6 Active filter design 71
6.1 Filter transfer functions 72
6.2 Filter circuits 80
 Low pass filter circuits 80
 High pass filter circuits 88
 Bandpass filter circuits 94
 Band reject filters 99
 All pass filter circuits 104
Contents

State variable filters .. 106
Summary ... 110
6.3 Controlled filters ... 111
6.4 Practical aspects of filter circuit design 119
 Sensitivity ... 119
 Tuning .. 120
 Component selection .. 123
 Stability of filters ... 125
6.5 Designing high order filters .. 125
 Determining the required transfer function 127
 Transformation and scaling ... 136
 From transfer function to circuitry 140
7 Integrators and differentiators ... 143
 7.1 Integration .. 143
 7.2 Differentiators .. 152
8 Log and antilog converters .. 161
 8.1 Log converters .. 161
 8.2 Antilog converters ... 177
 8.3 Commercial log and antilog converters 183
9 Arithmetical operations ... 185
 9.1 Addition and subtraction .. 185
 9.2 Multipliers ... 189
 Multiplier operation and errors 190
 Converting a multiplier to a divider 193
 Summary of popular multiplier circuits 194
 FET controlled resistor multiplier 196
 Variable transconductance multiplier 196
 Log–antilog multiplier .. 200
 A pulse width/pulse height multiplier 203
 Multipliers using D/A and A/D converters 207
 9.3 Commercial analog multipliers 207
10 Function generating circuits ... 209
 10.1 Function generating circuits using analog multipliers 209
 10.2 Log–antilog function generators 214
 Sine .. 217
 Cosine .. 218
 \tan^{-1} (arctan) ... 218
 10.3 Breakpoint function generators 219
 10.4 Function generating circuits using A/D and D/A converters 222
11 Limiters, peak detectors and rectifiers 223
Contents

11.2 Peak detectors 231
 Basic peak detectors 231
 Two stage peak detectors 233
 Overall feedback peak detector 234
 Improving peak detector performance 236
 Notes on component selection 242
 Peak detectors using ic building blocks 245

11.3 Half wave precision rectifiers 246

11.4 Full wave rectifiers 248
 Single op amp full wave rectifier 248
 Current output full wave rectifier 249
 Current input full wave rectifier 250
 Two op amp full wave rectifier with minimum components 250
 General purpose full wave rectifier 251
 Current summing full wave rectifier 252
 General notes on rectifier circuits 253

12 Peak, average and RMS circuits 257

12.1 Peak responding circuits 259

12.2 Mean absolute value circuits 262

12.3 Root mean square circuits 262

12.4 Thermal RMS converters 271

Bibliography 275

Index 279
Preface

In recent years we have seen the emergence of a new subject in electronics, that of digital signal processing (DSP). In DSP, which is based on the computational power of the microprocessor, many new application areas have been pioneered and at the same time old ones have been given a fresh impetus. Results have been produced, through various software techniques, which would previously have been possible, if at all, only through the prohibitively extensive use of hardware. Over this same period, a new technology has also come to maturity centred around the creation of monolithic integrated circuits which combine both analog and digital operations on a single silicon substrate. These hybrid ics and powerful DSP systems have produced enormous benefits for the design engineer in terms of reduced costs, increased performance and greater flexibility. Analog electronics, however, tends to have been overshadowed, based as it is on the more mature technology of the op amp. Yet a sound grasp of analog electronics is probably more important now than ever since DSP has opened up so many new applications, all of which require an analog front-end for their operation. There will also continue to be a need for prototyping new designs in hardware in the early stages of development work, whether this prototyping is done in the industrial laboratory by the experienced design engineer or in the college or university laboratory by students who are just setting out on the engineering path. Useful as software simulations of analog circuits are to the engineer and student, there is still no substitute for the ‘real-world’ experience provided by a hands-on approach.

We are conscious, owing to limitations of space, of the absence of conversion electronics in these pages, especially in the use of digital to analog converters and analog to digital converters. Apart from this omission, readers will find that many practical circuits from analog electronics are usefully described and outlined. However, this book is not intended to be a textbook in analog electronics, nor is it an introduction to the fundamentals of the op amp. Many other works carry out this role perfectly well. Instead, it is offered as a source of practical circuits in analog electronics so that the reader can readily and speedily obtain information and advice on the particular task which needs to be carried out using that work-horse of analog electronics,

Preface

the op amp. Using this superbly flexible building block, and a suitable addition of resistors, capacitors, diodes and discrete transistors, a remarkable range of operations can be carried out. If this volume is the first book which readers consult when they begin their task of designing, building and testing a particular analog circuit, then our work will have succeeded.

I wish to thank my wife, Denise, for her constant help and encouragement, and my daughters Lucy and Anna. With thanks also to my parents. [AP]

I wish to thank my wife Mary and my children, Katherine, Sean, Nicola and Daniel for their tolerance and support during the writing of this manuscript. [VW]