Contents

From the Times of London xv
Preface xvii

Chapter 1 Basic principles of the ionosphere 1
1.1 Introduction 1
1.1.1 The ionosphere and radio-wave propagation 1
1.1.2 Why the ionosphere is so different at high latitude 2
1.2 The vertical structure of the atmosphere 4
1.2.1 Nomenclature 4
1.2.2 Hydrostatic equilibrium in the atmosphere 5
1.2.3 The exosphere 7
1.2.4 The temperature profile of the neutral atmosphere 8
1.2.5 Composition 10
1.3 Physical aeronomy 13
1.3.1 Introduction 13
1.3.2 The Chapman production function 15
1.3.3 Principles of chemical recombination 18
1.3.4 Vertical transport 20
1.4 The main ionospheric layers 23
1.4.1 Introduction 23
1.4.2 The E and F1 regions 26
1.4.3 The D region 31
1.4.4 The F2 region and the protonosphere 37
1.4.5 Anomalies of the F2 region 39
1.4.6 The effects of the sunspot cycle 44
1.4.7 The F-region ionospheric storm 46
1.5 The electrical conductivity of the ionosphere 48
1.5.1 Introduction 48
1.5.2 Conductivity in the absence of a magnetic field 48
1.5.3 The effect of a magnetic field 48
1.5.4 The height variation of conductivity 50
1.5.5 Currents 50
1.6 Acoustic-gravity waves and traveling ionospheric disturbances 52
1.6.1 Introduction 52
1.6.2 Theory 53
1.6.3 Traveling ionospheric disturbances 57
1.6.4 The literature 57
1.7 References and bibliography 58

Chapter 2 Geophysical phenomena influencing the high-latitude ionosphere 61
2.1 Introduction 61
2.2 The magnetosphere 61
2.2.1 The geomagnetic field 61
2.2.2 The solar wind 63
2.2.3 The magnetopause 69
2.2.4 The magnetosheath and the shock 71
2.2.5 The polar cusps 72
2.2.6 The magnetotail 72
2.3 Particles in the magnetosphere 73
2.3.1 Principal particle populations 73
2.3.2 The plasmasphere 74
2.3.3 The plasma sheet 78
2.3.4 Trapped particles 78
2.3.5 The ring current 84
2.3.6 Birkeland currents 85
2.4 The dynamics of the magnetosphere 86
2.4.1 Circulation patterns 86
2.4.2 Field merging 90
2.4.3 Magnetospheric electric fields 91
2.4.4 The dynamics of the plasmasphere 92
2.5 Magnetic storms 93
2.5.1 Introduction 93
2.5.2 The classical magnetic storm and the D_s index 94
2.5.3 Magnetic bays at high latitude; the auroral electrojet 95
2.5.4 Magnetic indices 96
Chapter 3 **Fundamentals of terrestrial radio propagation** 113

3.1 Introduction 113
3.2 Electromagnetic radiation 113
3.2.1 Basics of line-of-sight propagation in vacuo 113
3.2.2 Principles of radar 116
3.2.3 The significance of the refractive index 118
3.2.4 Interactions between radio waves and matter 121
3.3 Propagation through the neutral atmosphere 122
3.3.1 The refractivity of the neutral atmosphere 122
3.3.2 Terrain effects 124
3.3.3 Noise and interference 127
3.4 Ionospheric propagation 140
3.4.1 Magnetoionic theory 140
3.4.2 Reflection of radio waves from an ionospheric layer 144
3.4.3 Relations between oblique and vertical incidence 149
3.4.4 Trans-ionospheric propagation 147
3.4.5 Principles of radio scintillation 152
3.4.6 Propagation involving reflection from a sharp boundary and full-wave solutions 159
3.4.7 Whistlers 167
3.5 Ionospheric scatter 169
3.5.1 Coherent scatter 169
3.5.2 Forward scatter 171
3.5.3 Incoherent scatter 171
3.6 HF-propagation-prediction programs 174
3.7 Summary 175
3.8 References and bibliography 176

Chapter 4 **Radio techniques for probing the ionosphere** 181

4.1 Introduction 181
4.2 Ground-based systems 181
4.2.1 Ionosondes 181
4.2.2 Coherent oblique-incidence radio-sounding systems 187
4.2.3 Incoherent-scatter radars 203
4.2.4 D-region absorption measurements 203
4.2.5 Ionospheric modification by HF transmitters 210
4.3 Space-based systems 215
4.3.1 A history of Earth–satellite and radio-rocket probing 215
4.3.2 Basic principles of operation and current-deployment of radio-beacon experiments 215
4.3.3 Topside sounders 216
4.3.4 In situ techniques for satellites and rockets 217
4.3.5 Capabilities and limitations 217
4.4 Other techniques 217
4.4.1 HF spaced-receiver and Doppler systems 217
4.4.2 The HF Doppler technique 219
4.4.3 Ionospheric imaging 220
4.5 Summary 220
4.6 References and bibliography 221

Chapter 5 The high-latitude F region and the trough 227
5.1 Circulation of the high-latitude ionosphere 227
5.1.1 Introduction 227
5.1.2 Circulation patterns 228
5.2 The behavior of the F region at high latitude 234
5.2.1 The F region in the polar cap 234
5.2.2 The effect of the polar cusps 237
5.2.3 The polar wind 239
5.2.4 The F layer in and near the auroral oval 240
5.3 Irregularities of the F region at high latitude 242
5.3.1 Introduction 242
5.3.2 Enhancements: patches, and blobs 244
5.3.3 Scintillation-producing irregularities 249
5.4 The main trough 260
5.4.1 Introduction 260
5.4.2 Observed properties and behavior of the main trough 261
5.4.3 The poleward edge of the trough 269
5.4.4 Motions of individual troughs 271
5.4.5 Mechanisms and models 273
5.5 Troughs and holes at high latitude 276
Chapter 6 The aurora, the substorm, and the E region 285

6.1 Introduction 285
6.2 Occurrence zones 286
6.2.1 The auroral zone and the auroral oval 286
6.2.2 Models of the oval 288
6.3 The auroral phenomena 291
6.3.1 The luminous aurora 291
6.3.2 The distribution and intensity of the luminous aurora 291
6.3.3 Auroral spectroscopy 302
6.3.4 Ionospheric effects 302
6.3.5 The outer precipitation zone 305
6.4 The substorm 308
6.4.1 History 308
6.4.2 The substorm in the aurora 308
6.4.3 Ionospheric aspects of the substorm 311
6.4.4 Substorm currents 312
6.4.5 The substorm in the magnetosphere 315
6.4.6 The influence of the IMF and the question of substorm triggering 319
6.4.7 Relations between the storm and the substorm 321
6.5 The E region at high latitude 322
6.5.1 Introduction 322
6.5.2 The polar E layer 323
6.5.3 The auroral E layer under quiet conditions 323
6.5.4 The disturbed auroral E layer 323
6.5.5 Auroral radar 326
6.5.6 Auroral infrasonic waves 330
6.5.7 The generation of acoustic gravity waves 331
6.6 Summary and implications 332
6.7 References and bibliography 333

Chapter 7 The high-latitude D region 337

7.1 Introduction 337
7.2 Auroral radio absorption 339
7.2.1 Introduction – history and technique 339
7.2.2 Typical auroral-absorption events and their temporal and spatial properties 340
7.2.3 General statistics in space and time 350
Chapter 8 High-latitude radio propagation: part 1 – fundamentals and early results 417

8.1 Introduction 417
8.2 ELF and VLF propagation 419
8.3 LF and MF propagation 429
8.4 HF propagation 439
8.4.1 Tests carried out between Alaska and Scandinavia on fixed frequencies 439
8.4.2 Tests involving transmission between Alaska and the continental USA 448
8.4.3 Other trans-polar HF experiments on fixed frequencies 450
8.4.4 College–Kiruna absorption studies at fixed frequencies 457
8.4.5 Effects of auroral-zone-absorption events on HF propagation 473
8.4.6 Sweep-frequency experiments 473
8.4.7 Other results from HF high-latitude studies from c. 1956–1969 479
8.4.8 Doppler and fading effects on HF high-latitude propagation paths 492
8.5 VHF/UHF and microwave propagation 529
8.6 Summary 531
8.7 References and bibliography 532

Chapter 9 High-latitude radio propagation: part 2 – modeling, prediction, and mitigation of problem 537

9.1 Introduction 537
9.2 Ionospheric ray-tracing, modeling, and prediction of propagation 538
9.2.1 Ionospheric ray-tracing 538
9.2.2 Realistic high-latitude models 538
9.2.3 Validation of ionospheric models 545
9.2.4 The performance of ELP–HF predictions at high latitudes 546
9.2.5 Recent validation of selected ionospheric prediction models using HF propagation data 553
9.3 Predictions of VHF/UHF propagation 568
9.4 Recent efforts at validation of ionospheric models 568
9.5 Mitigation of disturbance of HF propagation 572
9.5.1 Early attempts 572
9.5.2 Mitigation using solar–terrestrial data 572
9.5.3 Adaptive HF techniques 574
9.5.4 Realtime channel evaluation 580
9.5.5 Recent advances in assessment of HF high-latitude propagation channels 586
9.6 Other high-latitude propagation phenomena and evaluations 591
9.6.1 Large bearing errors on HF high-latitude paths 591
9.6.2 Effects of substorm on auroral and subauroral paths 593
9.6.3 Use of GPS/TEC data to investigate HF auroral propagation 594
9.6.4 The performance of HF modems at high latitude using multiple frequencies 597
9.7 Summary and discussion 597
9.8 References and bibliography 607

Appendix: some books for general reading 612
Index 613