Contents

Preface
page xiii

Part I: Macroscopics without mathematics
page 1

1 Introduction
1.1 Philosophy: lumping, splitting, abstraction, and reality
1.1.1 Lumping and splitting
1.1.2 Abstraction is reality
1.1.3 Macroscopics and the structure of processes
1.2 Strategies of research
1.2.1 On starting to build a bridge from both ends
1.2.2 Making the joint: bridges versus brains
1.2.3 Visions of the invisible
1.2.4 Preconceptions and experimental programs
1.3 Mixing and unmixing: molecules versus large objects
1.3.1 Molecules and individual identity: classical physical chemistry versus modern molecular biology
1.3.2 Arrangements, aggregations, amplifiers, automata
1.3.3 The kinetic preconception

2 Morphogen: one word for at least two concepts
2.1 Type I morphogens: Wolpert positional signallers
2.2 Activators versus morphogens
2.3 Inhibitors, such as chalones, versus morphogens
2.4 Type II morphogens: Turing morphogen pairs
2.5 The two-morphogen interaction
2.6 Activation and inhibition versus activated and inhibited regions

3 Pictorial reasoning in kinetic theory of pattern and form
3.1 The fit of pattern to boundaries and the dynamics of pattern growth
3.1.1 The fit of pattern to boundaries
3.1.2 The dynamics of pattern growth

vii
Contents

3.1.3 The guests of Procrustes: responses to chopping and stretching 65

3.2 Modes of cell division in plants 67
 3.2.1 One dimension: filaments 67
 3.2.2 Location of determinative events within the cell 72
 3.2.3 Division sequence of the Azolla root meristem 74

3.3 Animal development: response to damage and grafting 80
 3.3.1 Teratogenesis and nonlinearities in the Gierer–Meinhardt model 80
 3.3.2 “Firing” a persistent gradient: grafting behaviour of Hydra 84

4 Structure, equilibrium, kinetics 89
 4.1 Definitions of the categories 90
 4.1.1 Structure 90
 4.1.2 Equilibrium 91
 4.1.3 Kinetics 92
 4.1.4 Mechnochemistry 94
 4.1.5 Semantics of the term “field theory,” and electric fields 96
 4.2 Developmental control of the shapes of crystals 101
 4.2.1 Structural aspect: just a few symmetry elements 101
 4.2.2 Equilibrium shapes: surface free energy and Wulff’s theorem 102
 4.2.3 Kinetic aspect: the diverse shapes of snow crystals 104
 4.2.4 Biological control: the echinoid spicule 106
 4.3 Division of plant cells: Is control kinetic, thermodynamic, or mechanical? 108
 4.4 Animal morphogenesis: rearrangement, deformation, and proliferation of cells 110
 4.4.1 Some phenomena, and the cell-as-molecule concept 110
 4.4.2 Equilibrium aspects: differential adhesion 118
 4.4.3 From equilibrium to kinetics: incompleteness of adhesive-gradient theory 123
 4.4.4 Kinetic aspects involving mechanical forces 129
 4.5 A few problems (without solutions) 137

Part II: Pattern-forming processes

5 The making and breaking of symmetry 145
 5.1 Symmetry is in the spine of the beholder 145
 5.2 Open and closed traverses: the accuracy of self-organization 149
Contents ix

5.3 The simplest reaction-diffusion mechanism: optical resolution 154
 5.3.1 The mechanism of W. H. Mills 157
 5.3.2 A model without mathematics 158
5.4 Asymmetry begets asymmetry 167
 5.4.1 Trivial and significant antecedents 167
 5.4.2 Life on the planet Gedanken 170
5.5 The paradoxical nature of symmetry 172

6 Matters needing mathematics: an introduction 173
6.1 The language of rates, and the need for it 173
6.2 Differential equations, diffusion, and a Cheshire Cat 175
 6.2.1 A Cheshire Cat 175
 6.2.2 Differential equations 177
 6.2.3 Diffusion 178
 6.2.4 The Cheshire Cat, with mathematics, and three entities 181
6.3 Reaction-diffusion and growth of pattern: departure from uniformity, both ways 183
 6.3.1 Linearization about the spatially uniform steady state: a simple example 184
 6.3.2 A brief comment on the Brusselator 186
 6.3.3 The mechanism for optical resolution 187
 6.3.4 Reaction-diffusion: rate versus wavelength for a single morphogen 188
 6.3.5 Must the self-enhancement involve a squared concentration? 190
6.4 Thermodynamics, thresholds, bifurcations, and catastrophes 192
 6.4.1 Threshold flow rate: kinetic analysis of the optical-resolution model 193
 6.4.2 The same threshold condition with more entropy and less algebra 198
 6.4.3 An assortment of jargon: bifurcation, instability, catastrophe 201
6.5 Problems illustrating principles 209
6.6 Brief indications of solutions to problems 215

7 Kinetic models for stable pattern: an introduction 223
7.1 Turing’s model without equations 223
 7.1.1 Maynard Smith’s illustration 223
 7.1.2 Waves in phase as the starting point 225
7.2 Turing’s equations and the growth or decay of a sine-wave pattern 229
Contents

7.3 Turing’s conditions
 7.3.1 The conditions from a computer programmer’s viewpoint: Lacalli’s \((k_1, k_2)\) space 233
 7.3.2 The conditions from a chemical kineticist’s viewpoint: the Brusselator as an example 243

Part III: Bringing experiment and theory together 247

8 Classifications
 8.1 Beginnings of a classification of developmental theories 251
 8.2 The idiosyncrasies of some reaction-diffusion models
 8.2.1 Nonlinearity and the history of reaction-diffusion models 252
 8.2.2 Beginnings of a classification of reaction-diffusion models 256
 8.2.3 When can dynamics be classified as chiral? 261

9 Nonlinear reaction-diffusion models
 9.1 The Brusselator
 9.1.1 Chemical nature of the model (1): elementary two-intermediate schemes 264
 9.1.2 Chemical nature of the model (2): the Brusselator itself 265
 9.1.3 Pattern localization: its control by reactant concentrations 268
 9.1.4 The joining of models in sequence 272
 9.1.5 The “adaptable” character of the Brusselator 278
 9.2 The hyperchirality model
 9.2.1 Big hands from little hands 283
 9.2.2 Dynamics of the model 285
 9.2.3 A structural model, and a wider dynamic significance 289
 9.3 Brief comments on other models
 9.3.1 The Gierer–Meinhardt model 291
 9.3.2 Murray’s model 294
 9.3.3 The Sachs–Mitchison model, and an acknowledgment to Rashevsky 296

10 Approaching agreement?
 10.1 Acetabularia and some desmids
 10.1.1 Choice of organism and of developmental event to study 298
 299
Contents

10.1.2 Predictions, and assessment of the significance of results 302
10.1.3 Morphogens and mechanisms 305
10.1.4 Three feedback loops 307
10.1.5 Branching tip growth in some desmids 310

10.2 Drosophila segmentation 314
10.2.1 Communication versus “no crosstalk” 315
10.2.2 Carving out a theory 322

10.3 From slime moulds to salamanders 323
10.3.1 A morphogen pair in Dictyostelium discoideum? 324
10.3.2 Stages of Turing kinetics in Polysphondylium pallidum 325
10.3.3 Complex kinetics in the mesoderm of Ambystoma mexicanum 328
10.3.4 Turing patterns in nonliving chemical systems 332

10.4 Measuring, counting, regulation: Acetabularia versus Drosophila versus Dictyostelium 334
10.5 Confirmed predictions of kinetic theory 337

References 339
Index 351