CONTENTS

Preface

<table>
<thead>
<tr>
<th>Chapter 31 BEYOND THE MECHANICAL UNIVERSE (Program 27)</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.1 Science After Newton 1</td>
</tr>
<tr>
<td>31.2 Orders of Magnitude 4</td>
</tr>
<tr>
<td>31.3 A Final Word 11</td>
</tr>
</tbody>
</table>
Chapter 32 STATIC ELECTRICITY (Program 28) 13
32.1 The Beginnings of Electrical Science 13
32.2 The Electroscope 16
32.3 Charge Separation and Induction 17
32.4 Coulomb's Law 20
32.5 Electrostatic Machines 26
32.6 A Final Word 29

Chapter 33 THE ELECTRIC FIELD (Program 29) 31
33.1 Electric Fields of Isolated Point Charges 31
33.2 Electric Fields of Continuous Charge Distributions 37
33.3 Electric Flux 44
33.4 Gauss's Law 47
33.5 Applications of Gauss’s Law 51
33.6 Electric Fields and Conductors 57
33.7 A Final Word 61

Chapter 34 POTENTIAL AND CAPACITANCE (Program 30) 63
34.1 A Great American Scientist 63
34.2 Electric Potential 64
34.3 Electric Energy of Systems of Charges 74
34.4 Capacitors 77
34.5 Combinations of Capacitors 82
34.6 Energy Storage in a Capacitor 86
34.7 A Final Word 89

Chapter 35 VOLTAGE, ENERGY AND FORCE (Program 31) 91
35.1 Electric Fields and Potentials 92
35.2 Equipotential Surfaces 97
35.3 Voltages in the World 101
35.4 Charge Distribution on Conductors 107
35.5 A Final Word 110

Chapter 36 THE ELECTRIC BATTERY (Program 32) 113
36.1 Frog Legs and Electricity 113
36.2 The Workings of Metals 115
36.3 Battery Basics 123
36.4 Real Batteries 126
36.5 A Final Word 127
CONTENTS

Chapter 37 ELECTRIC CIRCUITS (Program 33)
37.1 The Invention of the Telegraph 129
37.2 Electrical Conduction in Wires 131
37.3 Ohm’s Law 134
37.4 Resistors Connected in Series and in Parallel 139
37.5 Kirchhoff’s Laws 144
37.6 RC Circuits with Variable Currents 151
37.7 A Final Word 157

Chapter 38 MAGNETISM (Program 34)
38.1 Lodestones and Magnetic Needles 159
38.2 Forces and Magnetic Fields 162
38.3 Magnets and Torques 169
38.4 Gauss’s Law for Magnetism 171
38.5 Magnetic Force on Moving Charges 174
38.6 Magnetic Force on Currents 183
38.7 A Final Word 188

Chapter 39 THE MAGNETIC FIELD (Program 35)
39.1 The Connection between Electricity and Magnetism 191
39.2 The Law of Biot and Savart 193
39.3 Force between Current-Carrying Wires 204
39.4 Ampère’s Law 207
39.5 A Final Word 215

Chapter 40 VECTOR FIELDS AND HYDRODYNAMICS (Program 36)
40.1 Action-at-a-Distance Revisited 217
40.2 Properties of Vector Fields 218
40.3 Flux of a Vector Field 219
40.4 Circulation of a Vector Field 222
40.5 Hydrodynamic Analogies for Energy and Forces 232
40.6 A Final Word 233

Chapter 41 ELECTROMAGNETIC INDUCTION (Program 37)
41.1 The Incomparable Experimentalist 235
41.2 Observations of Electromagnetic Induction 237
41.3 Faraday’s Law 245
41.4 Lenz’s Law 251
41.5 Self-Inductance 256
41.6 Mutual Inductance 259
41.7 LR Circuits 263
CONTENTS

41.8 Energy and Magnetic Fields 267
41.9 A Final Word 269

Chapter 42 ALTERNATING CURRENTS (Program 38) 273

42.1 Two Great Inventors 273
42.2 Alternating Currents in Simple Circuits 276
42.3 LC Circuits 280
42.4 LCR Circuits 282
42.5 Power in ac Circuits 288
42.6 Transformers 291
42.7 A Final Word 294

Chapter 43 MAXWELL’S EQUATIONS (Program 39) 295

43.1 A Victorian Genius 295
43.2 The Link between Electricity and Magnetism 296
43.3 Maxwell’s Equations in Free Space 301
43.4 Plane Waves Moving with Constant Speed 302
43.5 The Wave Equation 303
43.6 Electromagnetic Waves 307
43.7 Disturbances Caused by Accelerated Charges 312
43.8 A Final Word 314

Chapter 44 OPTICS (Program 40) 317

44.1 The Electromagnetic Spectrum 317
44.2 The Nature of Light 323
44.3 Reflection and Refraction 325
44.4 Interference of Light Waves 332
44.5 A Final Word 341

Chapter 45 THE MICHELSON – MORLEY EXPERIMENT (Program 41) 343

45.1 The Roots of Relativity 343
45.2 The Galilean Transformation 345
45.3 Space–Time Diagrams for Galilean Transformations 351
45.4 Relativity and the Nature of Light 354
45.5 The Michelson–Morley Experiment 356
45.6 A Final Word 363

Chapter 46 THE LORENTZ TRANSFORMATION (Program 42) 367

46.1 Interpreting the Michelson–Morley Experiment 367
46.2 The Postulates of the Special Theory of Relativity 369
46.3 The Lorentz Transformation 372
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.4</td>
<td>Length Contraction</td>
<td>378</td>
</tr>
<tr>
<td>46.5</td>
<td>Space–Time Diagrams</td>
<td>382</td>
</tr>
<tr>
<td>46.6</td>
<td>A Final Word</td>
<td>386</td>
</tr>
<tr>
<td>Chapter 47 VELOCITY AND TIME (Program 43)</td>
<td></td>
<td>389</td>
</tr>
<tr>
<td>47.1</td>
<td>Proper Length and Proper Time</td>
<td>389</td>
</tr>
<tr>
<td>47.2</td>
<td>Combinations of Velocities in Special Relativity</td>
<td>392</td>
</tr>
<tr>
<td>47.3</td>
<td>The Fizeau Experiment</td>
<td>397</td>
</tr>
<tr>
<td>47.4</td>
<td>The Muon Experiment</td>
<td>399</td>
</tr>
<tr>
<td>47.5</td>
<td>The Twin Paradox</td>
<td>402</td>
</tr>
<tr>
<td>47.6</td>
<td>A Final Word</td>
<td>405</td>
</tr>
<tr>
<td>Chapter 48 MASS, MOMENTUM, ENERGY (Program 44)</td>
<td></td>
<td>407</td>
</tr>
<tr>
<td>48.1</td>
<td>Inertia and Relativity</td>
<td>407</td>
</tr>
<tr>
<td>48.2</td>
<td>Momentum and Mass</td>
<td>408</td>
</tr>
<tr>
<td>48.3</td>
<td>Relativistic Kinetic Energy</td>
<td>417</td>
</tr>
<tr>
<td>48.4</td>
<td>Applications of Conservation of Relativistic Energy and Momentum</td>
<td>424</td>
</tr>
<tr>
<td>48.5</td>
<td>A Final Word</td>
<td>427</td>
</tr>
<tr>
<td>Chapter 49 ATOMS (Program 49)</td>
<td></td>
<td>431</td>
</tr>
<tr>
<td>49.1</td>
<td>Early History of Atomic Theory</td>
<td>431</td>
</tr>
<tr>
<td>49.2</td>
<td>Experimental Evidence Supporting Atomic Theory</td>
<td>432</td>
</tr>
<tr>
<td>49.3</td>
<td>The Atomic Structure of Matter</td>
<td>435</td>
</tr>
<tr>
<td>49.4</td>
<td>Rutherford’s Model of the Atom</td>
<td>439</td>
</tr>
<tr>
<td>49.5</td>
<td>Spectra of Electromagnetic Radiation</td>
<td>444</td>
</tr>
<tr>
<td>49.6</td>
<td>The Bohr Model of the Atom</td>
<td>448</td>
</tr>
<tr>
<td>49.7</td>
<td>A Final Word</td>
<td>453</td>
</tr>
<tr>
<td>Chapter 50 PARTICLES AND WAVES (Program 50)</td>
<td></td>
<td>455</td>
</tr>
<tr>
<td>50.1</td>
<td>Black Body Radiation</td>
<td>455</td>
</tr>
<tr>
<td>50.2</td>
<td>The Photoelectric Effect</td>
<td>459</td>
</tr>
<tr>
<td>50.3</td>
<td>The Dual Nature of Light</td>
<td>463</td>
</tr>
<tr>
<td>50.4</td>
<td>The De Broglie Model of the Hydrogen Atom</td>
<td>466</td>
</tr>
<tr>
<td>50.5</td>
<td>The Birth of Quantum Mechanics</td>
<td>470</td>
</tr>
<tr>
<td>50.6</td>
<td>The Quantum Mechanical Model of the Atom</td>
<td>478</td>
</tr>
<tr>
<td>50.7</td>
<td>The Heisenberg Uncertainty Principle</td>
<td>483</td>
</tr>
<tr>
<td>50.8</td>
<td>A Final Word</td>
<td>488</td>
</tr>
<tr>
<td>Chapter 51 ATOMS TO QUARKS (Program 51)</td>
<td></td>
<td>491</td>
</tr>
<tr>
<td>51.1</td>
<td>The Nature of Matter</td>
<td>491</td>
</tr>
<tr>
<td>51.2</td>
<td>Quantum States of the Hydrogen Atom</td>
<td>492</td>
</tr>
</tbody>
</table>
Table of Contents

51.3 Wave Functions for the Hydrogen Atom 495
51.4 Atoms with Many Electrons 500
51.5 Nuclei and Radioactivity 508
51.6 Particles and More Particles 516
51.7 A Final Word 525

Chapter 52 THE QUANTUM MECHANICAL UNIVERSITY (Program 52) 527

52.1 Introduction 527
52.2 Diffraction of Matter Waves 528
52.3 Electron Diffraction and the Dual Nature of Waves and Particles 533
52.4 Is Newtonian Mechanics Obsolete? 540
52.5 Quantum Mechanical Estimates 543
52.6 A Final Final Word 546

Appendix A THE INTERNATIONAL SYSTEM OF UNITS 549
Appendix B CONVERSION FACTORS 551
Appendix C THE PERIODIC TABLE OF THE ELEMENTS 555
Appendix D ASTRONOMICAL DATA 559
Appendix E PHYSICAL CONSTANTS 561

SELECTED BIBLIOGRAPHY 563
Index 567