Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xi</td>
</tr>
<tr>
<td>Glossary for lignans</td>
<td>xiii</td>
</tr>
</tbody>
</table>

1 Introduction

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nomenclature</td>
<td>4</td>
</tr>
<tr>
<td>Absolute configuration</td>
<td>8</td>
</tr>
<tr>
<td>Correlation of absolute configurations</td>
<td>9</td>
</tr>
<tr>
<td>References</td>
<td>10</td>
</tr>
</tbody>
</table>

2 A registry of the natural lignans

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The order of the material</td>
<td>12</td>
</tr>
<tr>
<td>Absolute configuration</td>
<td>14</td>
</tr>
<tr>
<td>Arrangement of individual entries</td>
<td></td>
</tr>
<tr>
<td>(i) The Chemical Abstracts Registry number</td>
<td>15</td>
</tr>
<tr>
<td>(ii) Literature references</td>
<td>16</td>
</tr>
<tr>
<td>(iii) Structural diagrams</td>
<td>16</td>
</tr>
<tr>
<td>References for the preamble</td>
<td>16</td>
</tr>
<tr>
<td>Structures and references in the registry</td>
<td>17</td>
</tr>
</tbody>
</table>

3 Biological and clinical properties of podophyllotoxin and other lignans

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>85</td>
</tr>
<tr>
<td>Use of lignans in folk and modern medicine</td>
<td>85</td>
</tr>
<tr>
<td>(i) History of podophyllotoxin</td>
<td>87</td>
</tr>
<tr>
<td>Biological properties and mechanism of action of podophyllotoxin</td>
<td>90</td>
</tr>
<tr>
<td>(i) Microtubules</td>
<td>90</td>
</tr>
<tr>
<td>(ii) Antiviral properties</td>
<td>93</td>
</tr>
<tr>
<td>(iii) Nucleoside transport</td>
<td>94</td>
</tr>
<tr>
<td>(iv) Antitumour effects</td>
<td>95</td>
</tr>
<tr>
<td>Mammalian lignans</td>
<td>95</td>
</tr>
<tr>
<td>(i) Structure</td>
<td>95</td>
</tr>
<tr>
<td>(ii) Biological properties</td>
<td>97</td>
</tr>
</tbody>
</table>
Contents

Structure and biological activity of other lignans 98
 (i) Acyclic lignans 98
 (ii) Arylnaphthalenes 99
 (iii) Dibenzo(cyclo-octadienes (bridged biphenyls) 100
 (iv) Lignans acting on cyclic adenosine-3’,5’-monophosphate (cAMP) 100
 (v) Lignans acting on platelet activating factor (PAF) 102
 (vi) Biological effects of lignans on plants and insects 103
Conclusions 105
References 106

4 Etoposide and Teniposide 113
 Introduction 113
 Clinical applications 114
 Structure and synthesis 116
 Mechanism of action 117
 (i) Inhibition of nucleoside transport 118
 (ii) DNA effects 118
 (iii) Effects on oxidative phosphorylation 122
 Cell sensitivity and resistance towards Etoposide 122
 Structure/activity studies – DNA effects 125
 Pharmacokinetics and pharmacology 127
 (i) Cellular uptake of Etoposide and Teniposide 127
 (ii) Pharmacokinetics 128
 (iii) Metabolism 129
 (iv) Toxicity 130
 Conclusions and future studies 130
References 132

5 Isolation, purification and initial characterisation 138
 Plant root sources 138
 Leaf and stem sources 140
 Seeds as sources 140
 Fruits as sources 141
 Resin and heartwood sources 142
 Lignan glycosides 144
 Isolation procedures 145
 (i) Solvent extraction 145
 (ii) Fractional extraction 146
 (iii) Separation by precipitation 148
Contents

(iv) Extraction of polar lignans from biological materials 148
Chromatographic methods 149
(i) Thin layer chromatography 149
(ii) Column chromatography 151
(iii) High-performance liquid chromatography 153
(iv) Gas–liquid chromatography 155
Formation of artefacts 156
(i) Changes induced by bases 156
(ii) Changes induced by acids 157
References 159

6 Determination of structure 166
Ultraviolet absorption spectra 166
Dibenzocyclo-octadiene lignans 170
Arylnaphthalene lignans 170
Infrared absorption spectra 170
(i) Lignan solvates 171
(ii) Preparation of the sample 171
(iii) Functional group responses 171
Mass spectra 175
Diarylbutanes and diarylbutyrolactones 177
Tetrahydrofurans (epoxylignans) 180
Furofurans (biseopylignans) 183
Oxofurofurans 185
Aryltetralins 186
Arylnaphthalenes 190
Dibenzocyclo-octadienes 191
Lignan conjugates 192
Nuclear magnetic resonance spectra 195
(i) Introductory remarks 195
(ii) Aromatic substitution patterns 195
(iii) Dibenzylbutanes and dibenzylbutyrolactones 197
(iv) 13C NMR spectroscopy 199
Furans 202
(i) 9,9’-Epoxylignans 202
(ii) 7,7’-Epoxylignans 203
(iii) 7,9’-Epoxylignans 206
Furofurans 208
Chemical correlation of furofurans and furans 213
Table of Contents

Contents

Aryltetrahydronaphthalenes 216
(i) Orientation of aromatic substituents 219
(ii) Use of CMR spectra 220
(iii) Aryltetrahydronaphthalene lactones 221
(iv) Absolute configuration 228

Dibenzo(cyclo-octadiene lignans 230
(i) Orientation of aromatic substituents 235
(ii) The steganacin subgroup 237

Lignan conjugates 242

Higher glycosides 246

Optical rotatory dispersion and circular dichroism 247
(i) Optical rotatory dispersion 247
(ii) Circular dichroism 249
(a) Dibenzylybutyro lactones 249
(b) Furfurs and furufurans 249
(c) Aryltetrahydronaphthalenes 253
(d) Compounds with inherent dissymmetry 256

References 257

7 Biosynthesis 269
The chemistry of lignin 269
Cleavage of lignin 273
(i) Acidic cleavage 273
(ii) Alkaline cleavage 274
(iii) Enzymic cleavage 275

Oligomers of cinnamic acid 275
Lignan biosynthesis 278
(i) The quinone methide mechanism 279
(ii) Biocatalytic synthesis 280
(iii) Experiments in vivo 287
(a) Preliminary studies and structural correlations 287
(b) The tetrahydronaphthaliene group 291
(c) Apolignans and alymphalamenes 295
(d) Biogenesis of ether groups 296

References 298

8 Synthesis 303
Oxidative coupling 303

Dibenzylybutanes and dibenzylybutyro lactones 306
(i) The Stobbe condensation 306
(ii) Other syntheses initiated by carbonions 310
Table of Contents

Contents ix

(iii) Stereoselective synthesis 313
(iv) Conjugate additions 315
Oxygenation of the side chain 318
Reactions with N-bromosuccinimide and dichlorodicyano-
1,4-benzoquinone 322
Diels–Alder syntheses 325
Routes to specific classes of lignins 330
Arylnaphthalenes 330
Furans 333
(i) 9,9’-Epoxylignans 333
(ii) 7,7’-Epoxylignans 334
(a) The bicyclic lactone route 337
(iii) 7,9’-Epoxylignans 338
Furofurans (7,9’-7,9’-double epoxylignans) 339
(i) Synthesis of monolactones 340
(ii) Synthesis of dilactones 341
(a) Unsymmetrical dilactones 342
Dibenzocyclo-octadienes 344
(i) Oxidative coupling 345
(ii) Ullmann synthesis 346
(iii) Elaboration of phenanthrenes 350
Dihydro- and tetrahydroanaphthalenes 354
(i) Summary of above procedures relevant to tetralin
synthesis 354
(a) Oxidative coupling 354
(b) Development of the Stobbe and carbanion
condensation products 355
(c) Oxidative cyclisation 355
(d) Diels–Alder synthesis 356
(ii) Modification of other lignans by Friedel-Crafts
cyclisation 357
(iii) Synthesis of podophyllotoxins 362
(a) Bristol–Myers group syntheses 368
(iv) Derivatives of podophyllotoxins 370
References 373

Botanical index 385
General index 388