Chemistry and Pharmacology of Natural Products

Lignans

Chemical, biological and clinical properties
CHEMISTRY AND PHARMACOLOGY OF NATURAL PRODUCTS

Series Editors: Professor J.D. Phillipson, The School of Pharmacy, University of London; Dr D.C. Ayres, Department of Chemistry, Queen Mary College, University of London; H. Baxter, formerly at the Laboratory of the Government Chemist, London.

Also in this series
Edwin Haslam Plant polyphenols: vegetable tannins revisited
Lignans

Chemical, biological and clinical properties

D. C. Ayres
Department of Chemistry
Queen Mary College, London

and

J. D. Loike
Department of Physiology and Cellular Biophysics
College of Physicians and Surgeons of Columbia University, New York

CAMBRIDGE UNIVERSITY PRESS
Cambridge
New York Port Chester
Melbourne Sydney
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xi</td>
</tr>
<tr>
<td>Glossary for lignans</td>
<td>xiii</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>4</td>
</tr>
<tr>
<td>Absolute configuration</td>
<td>8</td>
</tr>
<tr>
<td>Correlation of absolute configurations</td>
<td>9</td>
</tr>
<tr>
<td>References</td>
<td>10</td>
</tr>
<tr>
<td>2 A registry of the natural lignans</td>
<td>12</td>
</tr>
<tr>
<td>The order of the material</td>
<td>12</td>
</tr>
<tr>
<td>Absolute configuration</td>
<td>14</td>
</tr>
<tr>
<td>Arrangement of individual entries</td>
<td></td>
</tr>
<tr>
<td>(i) The Chemical Abstracts Registry number</td>
<td>15</td>
</tr>
<tr>
<td>(ii) Literature references</td>
<td>16</td>
</tr>
<tr>
<td>(iii) Structural diagrams</td>
<td>16</td>
</tr>
<tr>
<td>References for the preamble</td>
<td>16</td>
</tr>
<tr>
<td>Structures and references in the registry</td>
<td>17</td>
</tr>
<tr>
<td>3 Biological and clinical properties of podophyllotoxin and other lignans</td>
<td>85</td>
</tr>
<tr>
<td>Introduction</td>
<td>85</td>
</tr>
<tr>
<td>Use of lignans in folk and modern medicine</td>
<td>85</td>
</tr>
<tr>
<td>(i) History of podophyllotoxin</td>
<td>87</td>
</tr>
<tr>
<td>Biological properties and mechanism of action of podophyllotoxin</td>
<td>90</td>
</tr>
<tr>
<td>(i) Microtubules</td>
<td>90</td>
</tr>
<tr>
<td>(ii) Antiviral properties</td>
<td>93</td>
</tr>
<tr>
<td>(iii) Nucleoside transport</td>
<td>94</td>
</tr>
<tr>
<td>(iv) Antitumour effects</td>
<td>95</td>
</tr>
<tr>
<td>Mammalian lignans</td>
<td>95</td>
</tr>
<tr>
<td>(i) Structure</td>
<td>95</td>
</tr>
<tr>
<td>(ii) Biological properties</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>v</td>
</tr>
</tbody>
</table>
Contents

Structure and biological activity of other lignans 98
 (i) Acyclic lignans 98
 (ii) Arylnaphthalenes 99
 (iii) Dibenzocyclo-octadienes (bridged biphenyls) 100
 (iv) Lignans acting on cyclic adenosine-3′,5′-monophosphate (cAMP) 100
 (v) Lignans acting on platelet activating factor (PAF) 102
 (vi) Biological effects of lignans on plants and insects 103
Conclusions 105
References 106

4 Etoposide and Teniposide 113
 Introduction 113
 Clinical applications 114
 Structure and synthesis 116
 Mechanism of action 117
 (i) Inhibition of nucleoside transport 118
 (ii) DNA effects 118
 (iii) Effects on oxidative phosphorylation 122
 Cell sensitivity and resistance towards Etoposide 122
 Structure/activity studies – DNA effects 125
 Pharmacokinetics and pharmacology 127
 (i) Cellular uptake of Etoposide and Teniposide 127
 (ii) Pharmacokinetics 128
 (iii) Metabolism 129
 (iv) Toxicity 130
Conclusions and future studies 130
References 132

5 Isolation, purification and initial characterisation 138
 Plant root sources 138
 Leaf and stem sources 140
 Seeds as sources 140
 Fruits as sources 141
 Resin and heartwood sources 142
 Lignan glycosides 144
 Isolation procedures 145
 (i) Solvent extraction 145
 (ii) Fractional extraction 146
 (iii) Separation by precipitation 148
Contents

 (iv) Extraction of polar lignans from biological materials 148
Chromatographic methods 149
 (i) Thin layer chromatography 149
 (ii) Column chromatography 151
 (iii) High-performance liquid chromatography 153
 (iv) Gas–liquid chromatography 155
Formation of artefacts 156
 (i) Changes induced by bases 156
 (ii) Changes induced by acids 157
References 159

6 Determination of structure 166
 Ultraviolet absorption spectra 166
 Dibenzocyclo-octadiene lignans 170
 Arylnaphthalene lignans 170
 Infrared absorption spectra 170
 (i) Lignan solvates 171
 (ii) Preparation of the sample 171
 (iii) Functional group responses 171
 Mass spectra 175
 Diarylbutanes and diarylbutyrolactones 177
 Tetrahydrofurans (epoxylignans) 180
 Furofurans (bisepoxylignans) 183
 Oxofurofurans 185
 Aryltetralins 186
 Arylnaphthalenes 190
 Dibenzocyclo-octadienes 191
 Lignan conjugates 192
 Nuclear magnetic resonance spectra 195
 (i) Introductory remarks 195
 (ii) Aromatic substitution patterns 195
 (iii) Dibenzylbutanes and dibenzylbutyrolactones 197
 (iv)13C NMR spectroscopy 199
 Furans 202
 (i) 9,9’-Epoxylignans 202
 (ii) 7,7’-Epoxylignans 203
 (iii) 7,9’-Epoxylignans 206
 Furofurans 208
 Chemical correlation of furofurans and furans 213
Contents

Aryltetrahydronaphthalenes 216
 (i) Orientation of aromatic substituents 219
 (ii) Use of CMR spectra 220
 (iii) Aryltetrahydronaphthalene lactones 221
 (iv) Absolute configuration 228
Dibenzocyclo-octadiene lignans 230
 (i) Orientation of aromatic substituents 235
 (ii) The steganacin subgroup 237
Lignan conjugates 242
Higher glycosides 246
Optical rotatory dispersion and circular dichroism 247
 (i) Optical rotatory dispersion 247
 (ii) Circular dichroism 249
 (a) Dibenzylbutyrolactones 249
 (b) Furans and furofurans 249
 (c) Aryltetrahydronaphthalenes 253
 (d) Compounds with inherent dissymmetry 256
References 257

7 Biosynthesis 269
The chemistry of lignin 269
Cleavage of lignin 273
 (i) Acidic cleavage 273
 (ii) Alkaline cleavage 274
 (iii) Enzymic cleavage 275
Oligomers of cinnamic acid 275
Lignan biosynthesis 278
 (i) The quinone methide mechanism 279
 (ii) Biomimetic synthesis 280
 (iii) Experiments in vivo 287
 (a) Preliminary studies and structural correlations 287
 (b) The tetrahydronaphthaleine group 291
 (c) Apolignans and arylaphthalenes 295
 (d) Biogenesis of ether groups 296
References 298

8 Synthesis 303
Oxidative coupling 303
Dibenzylbutanes and dibenzylbutyrolactones 306
 (i) The Stobbe condensation 306
 (ii) Other syntheses initiated by carbanions 310
Contents

(iii) Stereoselective synthesis 313
(iv) Conjugate additions 315
Oxygenation of the side chain 318
Reactions with N-bromosuccinimide and dichlorodicyano-
1,4-benzoquinone 322
Diels–Alder syntheses 325
Routes to specific classes of lignins 330
Arylnaphthalenes 330
Furans 333
(i) 9,9-Epoxylignans 333
(ii) 7,7'-Epoxylignans 334
(a) The bicyclic lactone route 337
(iii) 7,9'-Epoxylignans 338
Furofurans (7,9'-7'-9-diepoxylignans) 339
(i) Synthesis of monolactones 340
(ii) Synthesis of dilactones 341
(a) Unsymmetrical dilactones 342
Dibenzocyclo-octadienes 344
(i) Oxidative coupling 345
(ii) Ullmann synthesis 346
(iii) Elaboration of phenanthrenes 350
Dihydro- and tetrahydronaphthalenes 354
(i) Summary of above procedures relevant to tetralin
synthesis 354
(a) Oxidative coupling 354
(b) Development of the Stobbe and carbaniion
condensation products 355
(c) Oxidative cyclisation 355
(d) Diels–Alder synthesis 356
(ii) Modification of other lignans by Friedel–Crafts
cyclisation 357
(iii) Synthesis of podophyllotoxins 362
(a) Bristol–Myers group syntheses 368
(iv) Derivatives of podophyllotoxins 370
References 373

Botanical index 385
General index 388
To students and colleagues in Westfield College,
Preface

The first systematic review of the naturally occurring lignans was presented by Professor R.D. Haworth in his Tilden lecture of 1942. There have been a number of subsequent review articles, notably that by W.M. Hearon and W.S. MacGregor in 1955. Their chemistry was covered in a collection of learned reviews published in honour of Professor L.R. Row by Andhra University Press in 1978. The present work is the first to cover the whole field of lignan chemistry including the application and promise of lignans as pharmaceutical agents. It is anticipated that expansion will continue through the application of modern methods of chromatography including HPLC, combined with the use of 2D-NMR and NOE for structure evaluation. These techniques are of especial relevance to the study of oligomeric lignans which are touched upon in the text.

The principal classes are defined in Chapter 1 with an explanation of the system of nomenclature that has been adopted. The contribution of Dr G.P. Moss who took on the considerable task of rationalising the often conflicting systems is gratefully acknowledged. It is hoped that readers who find that we have diverged from their own preference will accept that changes had to be made in order to be self-consistent. The system used throughout the book evolved with the help of some twenty active researchers who kindly responded to our requests for criticism of draft proposals.

Chapter 2 is a registry of lignans described up to April 1988 and includes at least one leading literature reference and plant source for each entry. A comprehensive review of the sources of lignans and neolignans has recently been published (p. 84) and Professor Richard Gottlieb is thanked for his help in making the manuscript available before publication. The senior author (DCA) would be particularly grateful if any sins of commission or omission in the registry are brought to his attention.

Chapter 3 (DCA and JDL) describes the general aspects of the pharmacology of lignans. The fourth chapter (JDL) describes the development of the clinically effective podophyllotoxin derivatives, Etoposide and Teniposide. Moreover, this chapter describes the current understanding of the
Preface

mechanism of action of these drugs. Subsequent chapters (DCA) deal with
the isolation, characterisation and synthesis of lignans; here the volume of
material necessitated a selective approach and this has been based on
examples of general application largely chosen from the more recent litera-
ture. Dr Paul Dewick offered valuable criticism of the section on biosyn-
thesis and the lignin scheme which appears in it was published with the
approval of the American Chemical Society.

The infrared spectrum of wuweizisu C was provided by Professor H.
Taguchi and material for the SFORD Scheme 6.14 by Professor D.N.
Kirk, who also read part of the manuscript. Acknowledgement is also
made to the Royal Society of Chemistry for the data in Scheme 6.32, to the
Editor of the Journal of Natural Products for Scheme 6.33 and to the Edi-
tor of Tetrahedron for Scheme 6.34. Permission to publish Scheme 6.39
was given by the Pharmaceutical Society of Japan and material for figures
6.36 and 6.37 was kindly provided by Dr Peter B. Hulbert. We also wish to
thank those authors who approved of the use of their material and to
numerous others who responded to chemical queries which arose during
the preparation of the manuscript.

The support of the Chemistry Department in Queen Mary College is
gratefully acknowledged and Professor B. J. Aylett and Mr G. Coumar-
ides are thanked for help with computing.

The production of the text owes much to the services of the library of
the Royal Society of Chemistry, to the staff of the Cambridge University
Press and to Editorial colleagues Professor J. David Phillipson and
Mr Herbert Baxter.

London D.C. Ayres January 1990
New York J.D. Loike
Glossary for lignans

ACTINOMYCIN D (structure as given)

ADENOCARCINOMA Malignant cancer of epithelial cell origin, derived from any of the three germ layers with a glandular growth pattern.

ADRIAMYCIN (structure as given)

A1BN Azo bis-isobutyl nitrile

ALOPECIA Loss of hair

AMPHIPATHIC molecules that contain both a hydrophilic and a hydrophobic moiety.
Glossary for lignans

AMSACRINE (m-AMSA; structure as given)

ANTIPYRETIC An agent used to control body temperature.

ARA-C CYTOSINE ARABINOSIDE (structure as given)

BIOGENETIC EQUIVALENT A substance available to the plant which may be converted by enzymic action to a metabolite needed for biogenesis.

BLEOMYCIN (structure as given)

Beomycin A₂
Glossary for lignans

CEREBELLAR ATAXIA Motor abnormality associated with lesions in the cerebellum.

CHLOROTIC Pertaining to a kind of anaemia sometimes affecting girls at puberty, characterised by a pale or greenish hue of the skin.

CHROMATIN Chromosomal material composed of DNA and proteins.

CISPLATIN (structure as given)

Cisplatin or cis-diaminedichloroplatinum

COLLIN'S REAGENT for the selective oxidation of alcohols using chromium trioxide/pyridine.

CONCANAVALLIN A globular protein of molecular weight 26,000 with two identical subunits, each containing 237 amino acids.

COREY'S METHOD for the stepwise oxidation of allylic alcohols and aldehydes to carboxylic acids using manganese dioxide/hexane followed by manganese dioxide/CN/methanol/acetic acid.

COSY A two dimensional NMR technique used to identify coupled protons.

CYCLOPHOSPHAMIDE (structure as given)

Cyclophosphamide

CYTOTOXIC NUCLEOSIDES Nucleosides which can damage cells.

DABCO 1,4-Diazabicyclo-[2,2,2]-octane.

DDQ 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone

DIBAL Di-isobutylaluminium hydride

DIPYRIDAMOLE (structure as given)

Dipyridamole

DIURETIC Treatment to excite discharge of urine.

DMAD Dimethyl acetylenedicarboxylate.
Glossary for lignans

DMSA Dimethylisoualamide.
DOXORUBICIN See adriamycin.
ENTEROHEPATIC CIRCULATION The cycling of compounds through the liver and intestine.
ERYTHROPHAGOCYTIC LYMPHOMATOYOSIS A malignancy of white cells that are highly phagocytic.
EUKARYOTIC (eucaryotic) pertaining to an organism whose cells contain a limiting membrane around the nuclear material.
FETON’S METHOD Oxidation with silver carbonate freshly precipitated onto Celite.
FIBROBLAST CELL LINE derived from elongated cells present in connective tissue and capable of forming collagen fibres.
FREMY’S SALT Potassium nitrooxodisulphonate K4[(SO4)2NO2].
HARDWOOD includes both conifer and sinapyl residues in its lignin in contrast to softwood lignin, which is largely derived from conifer alcohol.
HELA CELLS from a patient, Helen Lane, with carcinoma of the uterine cervix.
HEPATOTOXIC relates to an agent capable of damaging the liver.
HMPA Hexamethylphosphoramide.
HMDS Hexamethyldisiloxane HN(SiMe3)2 commonly used as the lithio derivative.
IFOSFAMIDE An isomer of cyclophosphamide where both amide groups carry one chloroethyl substituent.
IMMUNOBLOTTING Transferring proteins to special nitrocellulose filters where they can be tested for their capacity to react with specific antibodies.
IMMUNOMODULATOR A bioreactive substance that effects the physiological response of cells derived from the immune system.
INDOR Internuclear double resonance used mainly in proton spectra to detect coupling by monitoring the amplitude of one transition, while sweeping a low power excitation through the frequency range of the other.
KARPLUS RELATION relates the magnitude of the coupling between vicinal protons to the dihedral angle between the linking C—H bonds.
L 1210 CELL LINE A lymphocytic mouse leukaemic cell line which has been used extensively for routine screening programs of chemical agents and natural products for cytotoxic activity.
LAMELLA (middle) The inner of two membranes which enclose the chloroplasts, which are the sites of photosynthesis.
LANTHANIDE SHIFT REAGENTS Paramagnetic lanthanide β-diketoneolate complexes which associate with basic organic functional groups.
LDA Lithium di-isopropylamide.
LEUKEMIA Malignant neoplasms of white cell precursors.
LEUKOAENIA An abnormally low white cell count.
LHDS Lithium hexamethyldisiloxane.
LTFB Lithium tri-n-butylaluminum hydride.
LYMPHOCTYC Associated with or related to lymphocytes.
LYMPHOMA Malignancies that are characterised by the proliferation of cells native to the lymphoid tissues.
Glossary for lignans

LYMPHOCYTIC S49 CELL LINE A transformed cell line established from a lymphoma induced in a BALB/c mouse. These cells retain many of the properties of thymocytes.

LYMPHOCYTIC LEUKAEMIA Leukaemic cells that arise from white blood cell precursors of the lymphocyte.

MACROPHAGE any large mononuclear phagocyte.

MAYTANSINE (structure as given).

\[
\text{Maytansine}
\]

METHOTREXATE (structure as given).

\[
\text{Methotrexate}
\]

MITOGEN a substance which stimulates mitosis and the transformation of lymphocytes including those associated with lectin.

MURINE relating to mice.

NADH The reduced form of nicotinamide-adenine dinucleotide.

NASAL EMPIRYMA A collection of pus within the nasal passage.

NASOPHARYNX Part of the pharynx lying directly behind the nasal passages and above the soft palate.

NBMPr 4-nitrobenzylthioinosine (structure as given).

\[
\text{NBMPr or 4-nitrobenzylthioinosine}
\]

NBS N-bromosuccinimide.

NEUTROPHILS White blood cells that contain horseshoe-shaped nuclei and neutrophilic granules.
Glossary for lignans

OCULOCUTANEOUS TELANGIECTASIA A group of abnormal prominent capillaries, venules and arterioles that create small focal red lesions in the eye.

OXOLINIC ACID (structure as given).

![Oxolinic acid](image)

PERIPHERAL NEUROPATHY A nervous disease or disorder involving the peripheral nervous system.

PHAGOCYTE A scavenger cell which ingests bacteria, foreign particles etc.

SPLENOCYTE A phagocytic mononuclear leukocyte of the spleen.

TAL Tyrosine ammonia lyase

TAXOL (structure as given).

![Taxol](image)

TFA Trifluoroacetic acid

THROMBOCYTOPENIA A reduction in platelet count.

VERAPAMIL (structure as given)

![Verapamil](image)

VESICANT Any agent used in chemical warfare to blister and burn body tissues by contact with the skin or by inhalation.
Glossary for lignans

VINCRISTINE (structure as given).

Vincristine