Index

Page numbers in italics refer to tables.

absolute configuration, phosphonium salt, 56
adenosine diphasphate, 3
adenosine triphosphate, 3
alkylene phosphorane, 60–62
apicophilicity, 74
Arbusov A. E., 1, 54, 55

basicity
 hybridization effect, 26–27
 phosphines, 42–44
 Berry mechanism, 74–75
bond energy, 94
P:N bond, 30
P:O bond, 30
terms, 83
bond length, 93
bond order correlation, 31–32
bond order
 bond length correlation, 31–32
 vibrational frequency effect, 33

\(^{13}\)C nmr, 20–21
calcium phosphates, 3
catenaed compounds, 68–70
C.N.1, 5
C.N.2, 6–7
C.N.3
 oxidation, 52–53
 ozonides, 89
 reaction mechanism, 50–51
 stereochemistry, 38–42
 survey, 7–8
 synthesis, 37–38
C.N.4
 catenaed compounds, 68–70
 reaction mechanisms, 57–68
 stereochemistry, 56–57
 survey, 8
 synthesis, 54–56
C.N.5
 geometry, 72

intermediates in C.N.4 reactions, 76–80
ligand mobility, 73–75
stereochemistry, 72–73
survey, 8–9
synthesis, 72–73
C.N.6, 9
conformational analysis and PH coupling constants, 19
Coulson, C. A., 33
coupling constants, 97–98
Craig D. P., 33
cyclophosphazenes, 34–36
cyclopolyphosphates, 69
cyclopolyphosphines, 82
dehalogenation, 88
deoxygenation, 87
desulfurization, 86
Dew M. J. S., 35
dimethylphosphite, 10
DIOP, 92
dioxaphospholane hydrolysis, 76–77
diphosphate, 37
diphosphate, 69
diphosphine, see diphosphate
 d-orbitals and multiple bonding, 33
E₂ elimination, 57
electron negativity, 81
electron spectroscopy, 23–24
electron spin resonance (esr), 21–22
eutrophication, 3
fluoroapatite, 3
free-radical addition reactions
diphosphines, 12
PH₃, 21
phosphines, 11
phosphites, 11
phosphorus halides, 13
\(^{1}\)H nuclear magnetic resonance, 19–20

111
Hammett study
nucleophilic displacement at P, 58
quaternization of phosphines, 45
HCP, 5
bonding, 36
hexachlorodisilane reduction, 71
history of phosphorus chemistry, 1
homogeneous catalyzed hydrogenation, 91
HSAB (hard and soft acid base) theory, 46
hybridization
apicophilicity, 74
basicity, 26–27, 43
geometry, 26
PH coupling constants, 19
PP coupling constants, 18
hydrogenation, 91
ion-cyclotron resonance, 23
infrared spectroscopy (also see vibrational
spectroscopy), 95
ionization energy, and basicity, 44
2J_PCH and dihedral angle, 20
1J_PP, 18, 19
Kinnear–Perren reaction, 55
Liebig, J. von, 2
ligands, 46–50
lithium tetrahydroaluminate reduction, 70
mass spectroscopy, 22–23
metal phosphate hydrolysis, 37
metal-phosphorus bond, 48–50
metaphosphate, 64
analog, 7
intermediate, 64
Michaelis, A., 1
Michaelis–Arbuzov reaction, 54, 55
Michaelis–Becker reaction, 10
microcosmic salt, 1
molecular orbitals, 28
multiple bonds, 28–36
nuclear magnetic resonance (nmr)
13C, 20–21
1H, 19–20
31P, 17–19
nomenclature, xi–xiv
nucleic acids, 3
nucleophilicity of phosphines, 45–46
oxaphosphetane, 62–63
oxiran synthesis, 88–89
oxophosphorane, 73, 90
in synthesis, 90–91
oxidation state, 5
oxidative addition to C,N,3, 72
31P Chemical shifts, 96
31P nuclear magnetic resonance (nmr),
17–19
Pauling, L., 33
Pauling electronegativity, 81
PC bond reactions, 11
PCI reaction with alcohols, 85
Pearson hard soft acid base (HSAB) theory,
46
Perkov reaction, 55
pesticides, discovery, 1
PF3 ligand, 47–48
phenylsilane reduction, 71
PH2F3, 74
phosdrin, 55
P-halogen bond reactions, 13
P-halogen compounds as halogenating
agents, 85–86
P-H bond reactions, 10–11
phosphenbenzen, 6
bonding, 36
spectra, 36
phosphacynins, 6
phosphagens, 65
hydrolysis, 66
phosphate
detergents, 3
fertilizers, 2
cyclic, hydrolysis, 76
hydrolysis, 12
minerals, 3
phosphazenes
cyclic, 34–36, 68
linear, 69
phosphine (PH3)
radical addition to, 21
synthetic uses, 37
phosphine oxides, chiral, 56
phosphines
acyl, 40–41
basicity, 42–44
inversion, 39
ion-molecule reactions, 23
mass spectra, 22
nucleophilicity, 45–46
optically active, 38, 39
proton affinity, 42, 43
phosphino radicals, 22
phosphite desulfurization, 86
phosphate, dimethyl, 10
phosphocreatine, 66
phosphines, 40, 41
phosphonium salts
chiral, 56
reactions with nucleophiles, 57–63
phosphoranes, hydrolysis, 11, 12
phosphorane, 8
phosphoryl radial, 21, 52
Index

phosphoric esters, hydrolysis, 12
phosphorous acid
diethyl ester, 16
dimethyl ester, 10
phosphorous amides
alcoholysis, 11, 12
desulfurization, 87
oxiran synthesis, 88
phosphorus
abundance, 2
atomic energy levels, 25
cycle, 3, 4
ecology, 2-4
economy, 2
elemental forms, 5
first production, 1
group VA comparisons, 81-84
history, 1
red, 7
white, 7
phosphorus-carbon bonds, multiple, 6
reactions, 11
phosphorus ligands, 46-50
phosphorus-metal, bond, 48-50
coupling constants, 49
phosphorus nmr
chemical shift, 18, 96
chemical shift standard, 17
sensitivity, 17
phosphorus pentachloride, 8
phosphorus pentfluoride, 8
phosphorus trichloride
oxidation, 53
synthetic uses, 38
phosphorus trifluoride ligand, 47
phosphonyl group, infrared spectra, 16, 17
phostonate, 79
physical data, 93-94
PN bond reactions, 11-12
P₄O₁₀, 69, 70
PO bond reactions, 12
P-O bond, reduction, 12
polymers, phosphorus-nitrogen, 69
polyphosphate detergents, 1
PP bonds, 12, 82
P-S bond, 13
desulfurization, 13
pseudoarotation, 74
pyrophosphate, 69
quaternization, 45
redistribution, 51
reduction, C.N.4 compounds, 70-71
rotation barriers, 41, 42
Saunders, B. C., 1
Schrader G., 1
singlet oxygen, 89
Sn(C), 57
Sn(P), 58
spectroscopic data, 95-98
Staudinger H., 60, 61
stereochemistry
C.N.3, 38-42
C.N.4, 56-57
C.N.5, 72-73
Taft σ* and basicity, 42
tetraphosphate, 69
triarylphosphate dithalides, 86
triphenyl phosphate
in dehalogenation, 88
in deoxygenation, 87
triphenyl phosphate dithalides, 86
triphenyl phosphate oxonide, 89
triphasphate, 69
turnstile mechanism, 75
ultraposphate, 69
valence bond, 25
vibrational spectroscopy, 15-17
bond order, 33
Walden inversion, 67
Westheimer F. H., 76
Wilkinson’s catalyst, 91
Wittig G., 61
reaction, 61
yclid, see alkylene phosphorane