Supersymmetry has been proposed as a new symmetry of nature. Supersymmetric models of particle physics predict new superpartner matter states for each known particle in the Standard Model. The existence of such superpartners will have wide-ranging implications, from the early history of the Universe to what is observed at high energy accelerators such as CERN’s LHC.

In this text, the authors develop the concepts of supersymmetry from first principles, and show how it can be incorporated into a theoretical framework for describing unified theories of elementary particles. They develop the technical tools of supersymmetry using four-component spinor notation familiar to high energy experimentalists and phenomenologists. The text takes the reader from an abstract formalism to a straightforward recipe for writing supersymmetric gauge theories of particle physics, and ultimately to the calculation of cross sections and decay rates necessary for practical applications to experiments both at colliders and for cosmology.

This advanced text is a comprehensive, practical, and accessible introduction to supersymmetry for experimental and phenomenological particle physicists and graduates studying supersymmetry. Some familiarity with the Standard Model and tree-level calculations in quantum field theory is required. Exercises and worked examples that supplement and clarify the material are interspersed throughout.

Howard Baer is currently the J. D. Kimel Professor of Physics at Florida State University. He received his Ph.D. in theoretical physics from the University of Wisconsin in 1984 and has held postdoctoral appointments at the European Laboratory for Particle Physics (CERN), Argonne National Laboratory, and Florida State University. Dr. Baer is a Fellow of the American Physical Society. He has published over a hundred articles on the physics of elementary particles.

Xerxes Tata is a professor in the Department of Physics and Astronomy, University of Hawaii. He received his Ph.D. in theoretical high energy physics from the University of Texas at Austin. He has done postdoctoral work at the University of Oregon, the European Laboratory for Particle Physics (CERN), and the University of Wisconsin. He was also a visiting scientist at the High Energy Accelerator Research Organization (KEK), Japan. He joined the University of Hawaii in 1988. Dr. Tata has published over a hundred research articles in high energy physics, and is a Fellow of the American Physical Society.
WEAK SCALE SUPERSYMMETRY
From Superfields to Scattering Events

HOWARD BAER
Florida State University

XERXES TATA
University of Hawaii
To Adrienne and Kalpana, Madeleine, Kashmira, and Jake
Contents

Preface
page xiv

1 **The Standard Model**
1.1 Gauge invariance
1
1.2 Spontaneous symmetry breaking
3
1.3 Brief review of the Standard Model
1.3.1 QCD
6
1.3.2 The electroweak model
6

2 **What lies beyond the Standard Model?**
2.1 Scalar fields and quadratic divergences
12
2.2 Why is the TeV scale special?
14
2.3 What could the New Physics be?
16

3 **The Wess–Zumino model**
3.1 The Wess–Zumino Lagrangian
3.1.1 The field content
23
3.1.2 SUSY transformations and invariance of the action
25
3.1.3 The chiral multiplet
28
3.1.4 Algebra of the SUSY charges
29
3.2 Quantization of the WZ model
32
3.3 Interactions in the WZ model
35
3.4 Cancellation of quadratic divergences
36
3.5 Soft supersymmetry breaking
39

4 **The supersymmetry algebra**
4.1 Rotations
41
4.2 The Lorentz group
42
4.3 The Poincaré group
44
4.4 The supersymmetry algebra
46

5 **Superfield formalism**
5.1 Superfields
49
5.2 Representations of symmetry generators: a recap 52
5.3 Representation of SUSY generators as differential operators 54
5.4 Useful θ identities 56
5.5 SUSY transformations of superfields 58
5.6 Irreducible SUSY multiplets 60
5.6.1 Left-chiral scalar superfields 61
5.6.2 Right-chiral scalar superfields 63
5.6.3 The curl superfield 64
5.7 Products of superfields 64
5.8 Supercovariant derivatives 65
5.9 Lagrangians for chiral scalar superfields 68
5.9.1 Kähler potential contributions to the Lagrangian density 70
5.9.2 Superpotential contributions to the Lagrangian density 72
5.9.3 A technical aside 74
5.9.4 A master Lagrangian for chiral scalar superfields 75
5.10 The action as an integral over superspace 76
6 Supersymmetric gauge theories 79
6.1 Gauge transformations of superfields 79
6.2 The Wess–Zumino gauge 84
6.2.1 Abelian gauge transformations 84
6.2.2 Non-Abelian gauge transformations 86
6.3 The curl superfield in the Wess–Zumino gauge 89
6.4 Construction of gauge kinetic terms 92
6.5 Coupling chiral scalar to gauge superfields 95
6.5.1 Fayet–Iliopoulos D-term 98
6.6 A master Lagrangian for SUSY gauge theories 98
6.7 The non-renormalization theorem 104
7 Supersymmetry breaking 105
7.1 SUSY breaking by elementary fields 106
7.2 F-type SUSY breaking: the O’Raifeartaigh model 107
7.2.1 Mass spectrum: Case A 109
7.2.2 Mass spectrum: Case B 111
7.3 D-type SUSY breaking 113
7.3.1 Case A 114
7.3.2 Case B 114
7.4 Composite goldstinos 115
7.5 Gaugino condensation 116
7.6 Goldstino interactions 117
7.7 A mass sum rule 118
7.7.1 Scalar contributions 118
Contents

7.7.2 Vector contributions 119
7.7.3 Fermion contributions 119
7.8 Explicit supersymmetry breaking 121
7.9 A technical aside: \(\gamma_5 \)-dependent fermion mass matrices 124

8 The Minimal Supersymmetric Standard Model 127
8.1 Constructing the MSSM 127
8.1.1 Parameter space of the MSSM 134
8.1.2 A simplified parameter space 136
8.2 Electroweak symmetry breaking 138
8.3 Particle masses in the MSSM 141
8.3.1 Gauge bosons 141
8.3.2 Matter fermions 142
8.3.3 Higgs bosons 144
8.3.4 Gluinos 148
8.3.5 Charginos and neutralinos 149
8.3.6 Squarks and sleptons 155
8.4 Interactions in the MSSM 161
8.4.1 QCD interactions in the MSSM 161
8.4.2 Electroweak interactions in the MSSM 164
8.4.3 Interactions of MSSM Higgs bosons 174
8.5 Radiative corrections 184
8.5.1 Higgs boson masses 184
8.5.2 Squark mass 187
8.5.3 Chargino and neutralino masses 187
8.5.4 Yukawa couplings and SM fermion masses 188
8.6 Should the goldstino be part of the MSSM? 188

9 Implications of the MSSM 190
9.1 Low energy constraints on the MSSM 191
9.1.1 The SUSY flavor problem 191
9.1.2 The SUSY \(C P \) violation problem 195
9.1.3 Large \(C P \)-violating parameters in the MSSM? 196
9.2 Renormalization group equations 199
9.2.1 Gauge couplings and unification 199
9.2.2 Evolution of soft SUSY breaking parameters 204
9.2.3 Radiative breaking of electroweak symmetry 209
9.2.4 Naturalness constraint on superparticle masses 211
9.3 Constraints from \(b \rightarrow s \gamma \) decay 214
9.4 \(B_s \rightarrow \mu^+ \mu^- \) decay 217
9.5 Muon anomalous magnetic moment 220
9.6 Cosmological implications 221
9.6.1 Relic density of neutralinos 223
9.6.2 Direct detection of neutralino dark matter 228
9.6.3 Indirect detection of neutralinos 230
9.7 Neutrino masses 231
9.7.1 The MSSM plus right-handed neutrinos 232

10 Local supersymmetry 235
10.1 Review of General Relativity 236
10.1.1 General co-ordinate transformations 236
10.1.2 Covariant differentiation, connection fields, and the Riemann curvature tensor 238
10.1.3 The metric tensor 240
10.1.4 Einstein Lagrangian and field equations 242
10.1.5 Spinor fields in General Relativity 243
10.2 Local supersymmetry implies (super)gravity 245
10.3 The supergravity Lagrangian 251
10.4 Local supersymmetry breaking 257
10.4.1 Super-Higgs mechanism 258

11 Realistic supersymmetric models 261
11.1 Gravity-mediated supersymmetry breaking 264
11.1.1 Hidden sector origin of soft supersymmetry breaking terms 264
11.1.2 Why is the μ parameter small? 268
11.1.3 Supergravity Grand Unification (SUGRA GUTs) 269
11.2 Anomaly-mediated SUSY breaking 278
11.2.1 The minimal AMSB (mAMSB) model 280
11.2.2 D-term improved AMSB model 284
11.3 Gauge-mediated SUSY breaking 285
11.3.1 The minimal GMSB model 287
11.3.2 Non-minimal GMSB models 293
11.4 Gaugino-mediated SUSY breaking 294
11.5 An afterword 296

12 Sparticle production at colliders 298
12.1 Sparticle production at hadron colliders 299
12.1.1 Chargino–neutralino production 301
12.1.2 Chargino pair production 308
12.1.3 Neutralino pair production 310
12.1.4 Slepton and sneutrino pair production 312
12.1.5 Production of gluinos and squarks 314
12.1.6 Gluino or squark production in association with charginos or neutralinos 319
Contents

12.1.7 Higher order corrections 321
12.1.8 Sparticle production at the Tevatron and LHC 322
12.2 Sparticle production at e^+e^- colliders 322
12.2.1 Production of sleptons, sneutrinos, and squarks 325
12.2.2 Production of charginos and neutralinos 328
12.2.3 Effect of beam polarization 331
12.2.4 Bremsstrahlung and beamstrahlung 335

13 Sparticle decays 338
13.1 Decay of the gluino 342
13.1.1 $\tilde{g} \rightarrow u \bar{d} \tilde{W}_j$: a worked example 342
13.1.2 Other gluino decays 346
13.2 Squark decays 350
13.3 Slepton decays 353
13.4 Chargino decays 357
13.4.1 A chargino degenerate with the LSP 360
13.5 Neutralino decays 361
13.6 Decays of the Higgs bosons 364
13.6.1 Light scalar h 365
13.6.2 Heavy scalar H 366
13.6.3 Pseudoscalar A 366
13.6.4 Charged scalar H^\pm 367
13.7 Top quark decays to SUSY particles 367
13.8 Decays to the gravitino/goldstino 368
13.8.1 Interactions 368
13.8.2 NLSP decay to a gravitino within the mGMSB model 371

14 Supersymmetric event generation 374
14.1 Event generation 377
14.1.1 Hard scattering 377
14.1.2 Parton showers 377
14.1.3 Cascade decays 379
14.1.4 Models of hadronization 382
14.1.5 Beam remnants 383
14.2 Event generator programs 383
14.3 Simulating SUSY with ISAJET 384
14.3.1 Program set-up 384
14.3.2 Models for SUSY in ISAJET 385
14.3.3 Generating events with ISAJET 388

15 The search for supersymmetry at colliders 394
15.1 Early searches for supersymmetry 395
Contents

15.1 e^+e^- collisions 395
15.1.1 e^+e^- collisions 395
15.1.2 Searches at the CERN $S p \bar{p} S$ collider 397
15.1.3 A light gluino window? 397
15.2 Search for SUSY at LEP and LEP2 398
15.2.1 SUSY searches at the Z pole 398
15.2.2 SUSY searches at LEP2 399
15.2.3 SUSY Higgs searches at LEP2 401
15.3 Supersymmetry searches at the Tevatron 402
15.3.1 Supersymmetry searches at run 1 403
15.3.2 Prospects for future SUSY searches 407
15.4 Supersymmetry searches at supercolliders 414
15.4.1 Reach of the CERN LHC 416
15.4.2 SUSY reach of e^+e^- colliders 423
15.5 Beyond SUSY discovery 427
15.5.1 Precision SUSY measurements at the LHC 427
15.5.2 Precision measurements at a LC 437
15.5.3 Models of sparticle masses: a bottom-up approach 450
15.6 Photon, muon, and very large hadron colliders 452

16 R-parity violation 454
16.1 Explicit (trilinear) R-parity violation 457
16.1.1 The TRV Lagrangian 457
16.1.2 Experimental constraints 459
16.1.3 s-channel sparticle production 465
16.1.4 R decay of the LSP 466
16.1.5 Collider signatures 468
16.2 Spontaneous (bilinear) R-parity violation 470

17 Epilogue 474

Appendix A Sparticle production cross sections 476
A.1 Sparticle production at hadron colliders 476
A.1.1 Chargino and neutralino production 476
A.1.2 Gluino and squark production 478
A.1.3 Gluino and squark associated production 481
A.1.4 Slepton and sneutrino production 482
A.2 Sparticle production at e^+e^- colliders 483

Appendix B Sparticle decay widths 491
B.1 Gluino decay widths 491
B.1.1 Two-body decays 491
B.1.2 Three-body decays to light quarks 492
B.1.3 $\tilde{g} \rightarrow \tilde{Z}_1 t\bar{t}$ and $\tilde{g} \rightarrow \tilde{Z}_1 b\bar{b}$ 493
B.1.4 $\tilde{g} \rightarrow \tilde{W}_1 t\bar{b}$ decays 499
Contents

B.2 Squark decay widths 501
B.3 Slepton decay widths 506
B.4 Neutralino decay widths 509
 B.4.1 Two-body decays 509
 B.4.2 $\tilde{Z}_i \rightarrow \tilde{Z}_j f \bar{f}$ decays 511
 B.4.3 $\tilde{Z}_j \rightarrow \tilde{W}_i^+ \tau^- \nu_\tau$ decays 516
B.5 Chargino decay widths 516
 B.5.1 Two-body decays 516
 B.5.2 Three-body decay: $\tilde{W}_i \rightarrow \tilde{Z}_j \tau \bar{\nu}_\tau$ 519
B.6 Top quark decay to SUSY particles 523

Appendix C Higgs boson decay widths 524
 C.1 Decays to SM fermions 524
 C.2 Decays to gauge bosons 525
 C.3 Decays to sfermions 526
 C.4 Decays to charginos and neutralinos 528
 C.5 Decays to Higgs bosons 529

Bibliography 531
Index 533
Preface

Supersymmetry (SUSY) is a lovely theoretical construct, and has captured the imagination of many theoretical physicists. It allows for a new synthesis of particle interactions, and offers a new direction for the incorporation of gravity into particle physics. The supersymmetric extension of the Standard Model also ameliorates a host of phenomenological problems in the physics of elementary particles, if superpartners exist at the TeV scale. These new states may well be discovered in experiments at high energy colliders or in non-accelerator experiments within the next few years!

There are several excellent books that explore the theoretical structure of supersymmetry. These advanced texts are rather formal, and focus more on the theoretical structure rather than on the implications of supersymmetry. This makes them somewhat inaccessible to a large number of our experimental as well as phenomenological particle physics colleagues, working on the search for the new particles predicted by supersymmetry. Our goal in this book is to provide a comprehensive (and comprehensible) introduction to the theoretical structure of supersymmetry, and to work our way towards an exploration of its experimental implications, especially for collider searches. Although we have attempted to orient this book towards experimentalists and phenomenologists interested in supersymmetry searches, we hope that others will also find it interesting. In particular, we hope that it will provide theorists with an understanding and appreciation of some of the experimental issues that one is confronted with in the search for new physics.

We use the language of four-component relativistic spinors throughout this text, rather than the sometimes more convenient approach using two-component spinors. Although this makes some of the manipulations, especially in Chapters 5–6, appear to be somewhat more cumbersome, we felt that the use of four-spinors, which is familiar to most “practical particle physicists,” would make up for this. For this reason, and also because we did not want to adopt a schizophrenic approach using two-component spinors for some things, and four-component spinors for others, we have eschewed the use of two-component spinors throughout.
After a review of the Standard Model (mainly to set up notation) and an examination of the motivations for weak scale supersymmetry, the text naturally divides into three parts. The first part (Chapters 3–7) of the book introduces supersymmetry, and details how to construct globally supersymmetric relativistic quantum field theories. We provide a “master formula” for the Lagrangian of a general, globally supersymmetric non-Abelian gauge theory that can serve as the starting point for the construction of supersymmetric models of particle physics. The inclusion of supersymmetry breaking is discussed in Chapter 7.

The second part of the book applies these lessons and develops the so-called Minimal Supersymmetric Standard Model, the MSSM, which is (almost) the direct supersymmetrization of the Standard Model. The physical particles of the MSSM are identified, and their various couplings, which are necessary for exploration of the broad phenomenological implications of the theory, are calculated. An assortment of implications of the MSSM are examined in Chapter 9, including the SUSY flavor and CP problems, renormalization group running, cosmological dark matter, and more. We discuss local supersymmetry (which, we show, includes general relativity) in Chapter 10, and in the following chapter present an overview of some of the specific mechanisms by which Standard Model superpartners may acquire supersymmetry breaking masses and couplings.

The final third of the book is oriented towards collider physics. We detail the calculations of scattering cross sections and decay rates starting from the couplings of supersymmetric particles that were found in Chapter 8. We focus on technical aspects of these calculations, including methods for dealing with Majorana particles, which the reader may not be familiar with. We also outline methods for simulation of collider scattering events in which supersymmetric matter has been produced. We then discuss what has been learned, and what may be learned, about weak scale supersymmetry from past, present, and future experiments at both hadron and e^+e^- colliders. In a final chapter, we go beyond the MSSM, but only insofar as to introduce R-parity violation, which changes the phenomenology considerably. In three appendices, we present formulae for evaluating tree-level scattering cross sections at electron–positron as well as hadron colliders, decay rates of supersymmetric particles, and decay rates of the several Higgs bosons present in all SUSY models. Various exercises are interspersed throughout the text. Some of these are pedagogical in nature, asking the reader to fill in or complete a calculation, while others develop the subject beyond the discussion in the text.

We have not attempted to make a comprehensive list of references to the vast literature on supersymmetry. Where we develop a topic from scratch, we reference only some of the classic papers on the subject. Sometimes, this means that we may not reference earlier pioneering work in favor of more complete studies that may prove more useful to a reader attempting to learn the subject. However, where we
content ourselves with stating a particular result rather than deriving it completely – this is more frequently the case in the latter part of the text where we discuss supersymmetry phenomenology – we provide a reference where the reader may find further details. Thus, except for referencing some classic papers, we generally provide references only to papers where necessary details not presented in the text may be found. We apologize to the reader for this shortcoming, and also to the many researchers whose work has not been explicitly referenced.

Although we hope that the interested reader will work through the entire book, those who are interested only in phenomenology and are willing to accept supersymmetric couplings from the MSSM at face value, can skip Chapters 3–7 altogether. Chapter 10 can also be omitted without essential loss of continuity. Alternatively, the reader who is interested in model-building but does not want to work through the machinery of SUSY may use the “master formula” in Chapter 6 as a starting point, focussing on its use for writing down supersymmetric models. We urge all readers to visit Chapter 3, where many of the extraordinary properties of supersymmetric theories are explicitly illustrated.

We assume that the reader is familiar with tree-level calculations in quantum field theory through QED, as presented, for instance, by the first seven chapters of Introduction to Quantum Field Theory, by M. Peskin and D. V. Schroeder. We also assume some familiarity with the Standard Model of particle physics, but just in the unitarity gauge, as presented for instance in Collider Physics, by V. Barger and R. J. N. Phillips. No prior knowledge of supersymmetry is assumed. Indeed we have done our utmost to develop this subject from scratch, paying attention both to concepts as well as to technical details that will enable the reader to carry out research in the field. However, while we have emphasized pedagogy in our development of topics to do with supersymmetry, it is not possible to be as detailed on every topic that is necessary for describing the implications of supersymmetry for particle physics. Aside from tree-level quantum field theory and the basics of the Standard Model that we have already mentioned, these might include the ideas of the parton model, collider kinematics, Grand Unification, renormalization group methods, Big Bang cosmology etc. that have become part of the repertoire of many working particle physicists. Although we develop these ideas enough for the reader to be able to follow along, the reader who is interested in their detailed development is urged to consult the references in the text, and also the excellent treatment in the many text books listed in the Bibliography.

In writing this book, we are indebted to an enormous number of people, including teachers, students and colleagues from whom we have learned much. One of us (XT) benefited vastly from S. Weinberg’s lectures on supersymmetry at the University of Texas at Austin in Spring 1982. Much of what we know is the result of collaborations and discussions over the years with many people,
Preface xvii

HB would like to thank especially Adrienne, Madeleine, and Jake, and also Iranus M. Baer, for their support and encouragement, and as always, Norman C. Rone for his guidance and support, while completing this text. XT is grateful to Kalpana and Kashmir for their support and patience during the time that he was working on this text, and to his late parents who always encouraged him to further his studies.

Corrections to this book

A list of misprints and corrections to this book is posted on the World Wide Web at the URL www.cambridge.org/9780521857864/. Reports of additional errors or misprints in this book would be appreciated by the authors.

We thank those readers who sent us corrections to the hardback edition of this text.