Electrophilic halogenation

Reaction pathways involving attack by electrophilic halogens on unsaturated compounds

Cambridge Chemistry Texts

GENERAL EDITORS

D. T. Elmore
Professor of Biochemistry
The Queen's University of Belfast

A. Leadbetter
Professor of Physical Chemistry
University of Exeter

K. Schofield, D.Sc.
Professor of Organic Chemistry
University of Exeter
Electrophilic halogenation

Reaction pathways involving attack by electrophilic halogens on unsaturated compounds

Peter B. D. de la Mare

Professor of Chemistry
University of Auckland
Contents

1 Terminology, definitions, methods of mechanistic study
 1.1 Introduction 1
 1.2 Energy diagrams 2
 1.3 Intermediates 5
 1.4 Methods of mechanistic study 6
 1.5 Kinetic methods 7
 1.6 Environmental influences; solvent effects 8
 1.7 Catalysts 9
 1.8 Acidity-functions 10
 1.9 Isotope effects 10
 1.10 Structural effects 11
 1.11 Linear free-energy relationships 12
 1.12 Stereochemical influences; steric effects 13
 1.13 Effects of temperature 14
 1.14 Thermodynamic and kinetic factors as determinants of rates and products 15
 1.15 Classification of mechanisms 16
 1.16 Additions, substitutions, replacements, displacements and halogenations 17
 1.17 Symbolism 18

2 The bonding and non-bonding properties of the halogens
 2.1 Introduction 19
 2.2 The elements and derived diatomic molecules 22
 2.3 Mixed halogens 23
 2.4 Charge-transfer complexes of the diatomic molecules 24
 2.5 Polyhalide ions 25
Contents

2.6 *The halide anions: covalent halides as sources of nucleophilic halogen*

2.7 *Cationic halogen species*

2.8 *Covalent halides as sources of electrophilic halogen*

2.8.1 *Introduction*

2.8.2 *Halogen-oxygen and halogen-sulphur bonds*

2.8.3 *Halogen-nitrogen bonds*

2.8.4 *Halogen-carbon bonds*

2.8.5 *General considerations*

2.9 *Steric and electronic effects of halogen substituents*

2.9.1 *Steric effects*

2.9.2 *Inductive and conjugative effects*

2.10 *Pseudo-halogens*

3 *The general patterns of reactions of electrophiles with unsaturated compounds*

3.1 *Introduction*

3.2 *Reagents and substrates*

3.3 *One-stage additions*

3.4 *One-stage substitutions*

3.5 *Two-stage reactions*

3.5.1 *General considerations*

3.5.2 *Kinetics and products*

3.5.3 *Orientation*

3.5.4 *Reactions of the intermediate: combination with a nucleophile*

3.5.5 *Reactions of the intermediate: proton loss, or loss of another electrophile*

3.5.6 *Reactions of the intermediate: rearrangement by group migration*

3.5.7 *Other reactions of intermediates or products*

3.5.8 *Reversibility of reaction paths*

3.5.9 *Intermediates isomeric with the reactants: molecular complexes, σ-complexes and ion-pairs*

3.6 *Generalised pattern of reactions between electrophilic reagents and unsaturated compounds*

4 *Fluorine and its compounds as electrophiles*

4.1 *Reactions of molecular fluorine*

4.2 *Electrophilic fluorination with fluoroxy-compounds*

4.3 *Xenon difluoride as a fluorinating agent*

4.4 *Fluorination by metallic ions*
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>Perchlordifluoride</td>
</tr>
<tr>
<td>5</td>
<td>Reactions of molecular chlorine with unsaturated compounds</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>5.2</td>
<td>Kinetic forms: composition and nature of the transition state</td>
</tr>
<tr>
<td>5.3</td>
<td>Effects of structure on reactivity</td>
</tr>
<tr>
<td>5.4</td>
<td>Product-forming sequences: replacement at the attacked centre</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Substitution in olefinic compounds</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Substitution in aromatic compounds</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Comparison of effects of substituents on ortho- and para-positions</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Replacement of groups other than hydrogen</td>
</tr>
<tr>
<td>5.5</td>
<td>Product-forming sequences: replacement with rearrangement</td>
</tr>
<tr>
<td>5.6</td>
<td>Product-forming sequences: addition to form dichlorides</td>
</tr>
<tr>
<td>5.6.1</td>
<td>anti-Addition; addition to alkyl-substituted ethylenes, to deactivated olefinic systems, and to simple cycloalkenes</td>
</tr>
<tr>
<td>5.6.2</td>
<td>syn-Addition; addition to aryl-substituted cyclic systems, including aromatic compounds</td>
</tr>
<tr>
<td>5.6.3</td>
<td>syn-Addition; addition to aryl-substituted acyclic systems</td>
</tr>
<tr>
<td>5.6.4</td>
<td>syn-Addition; competition for the carbocationic centre by other neighbouring groups</td>
</tr>
<tr>
<td>5.6.5</td>
<td>syn-Addition determined by solvent interactions</td>
</tr>
<tr>
<td>5.7</td>
<td>Product-forming sequences: addition with accompanying incorporation of nucleophiles</td>
</tr>
<tr>
<td>5.7.1</td>
<td>Attack by an external nucleophile</td>
</tr>
<tr>
<td>5.7.2</td>
<td>Attack by an internal nucleophile</td>
</tr>
<tr>
<td>5.7.3</td>
<td>Orientation; Markownikoff and anti-Markownikoff addition</td>
</tr>
<tr>
<td>5.8</td>
<td>Product-forming sequences: addition with double-bond rearrangement</td>
</tr>
<tr>
<td>5.9</td>
<td>Product-forming sequences: reactions through rearranged carbocationic intermediates</td>
</tr>
<tr>
<td>5.10</td>
<td>Product-forming sequences: further reactions of the primary products</td>
</tr>
<tr>
<td>5.11</td>
<td>Product-forming sequences: addition–elimination pathways</td>
</tr>
<tr>
<td>5.12</td>
<td>Acetylenes and allenes</td>
</tr>
<tr>
<td>5.13</td>
<td>Summary</td>
</tr>
</tbody>
</table>
Contents

6 Chlorinations by chlorinating species other than molecular chlorine

6.1 Introduction 96

6.2 Compounds having chlorine–halogen bonds 97

6.2.1 Chlorine fluoride 97

6.2.2 Benzene iododichloride 97

6.2.3 Iodine trichloride 99

6.3 Neutral species having chlorine–oxygen or chlorine–sulphur bonds 100

6.3.1 Introduction 100

6.3.2 Hypochlorous acid 100

6.3.3 Chlorine acetate 101

6.3.4 t-Butyl hypochlorite 104

6.3.5 Sulphuryl chloride 106

6.4 Protonated species having chlorine–oxygen bonds 107

6.4.1 Introduction 107

6.4.2 Acid-catalysed chlorinations by hypochlorous acid; kinetic forms and structural effects 107

6.4.3 Orientation of addition to olefinic substances; the accompanying rearrangements, and substitutions accompanying addition, in the reactions of hypochlorous acid and acidified hypochlorous acid in aqueous solution 110

6.4.4 Acid-catalysed reactions of chlorine acetate and of t-butyl hypochlorite 115

6.4.5 Chlorinations in sulphuric acid 116

6.5 Species having chlorine–nitrogen bonds 117

6.6 Chlorination by metallic halides 120

6.6.1 Sequences initiated by electrophilic metallation 120

6.6.2 Heterolysis of chlorine–nucleophile bonds catalysed by Lewis acids 120

6.6.3 Chlorinations initiated by metal-containing electrophiles 121

7 The bromination of unsaturated compounds

7.1 Introduction 124

7.2 Reactions involving ‘positive bromine’ 125

7.3 Kinetic forms, and structural effects, for reactions with molecular bromine 126

7.3.1 Reactions following second-order kinetics 126
Contents

7.3.2 Reactions following kinetics of order greater than one in bromine 131
7.3.3 Bromide-catalysed brominations 132
7.3.4 Bromination by the tribromide ion 133
7.3.5 Acid-catalysed brominations 134
7.3.6 Primary kinetic isotope effects, and reversibility, in bromine substitutions 135
7.3.7 Temperature coefficients for bromination 138

7.4 The intermediates in reactions initiated by electrophilic bromine 138
7.4.1 Introduction 138
7.4.2 Isomeric molecular complexes involving molecular bromine 139
7.4.3 Isomeric 2-complexes involving molecular bromine 139
7.4.4 Ion-pairs as intermediates in electrophilic brominations; and a note on brominations in aprotic solvents 140
7.4.5 Carbocationic intermediates formed in electrophilic brominations 143
7.4.6 Competition for the carbocationic centre 147
7.4.7 Rearrangements of the carbocationic intermediate 148

7.5 Reactions initiated by brominating species other than molecular bromine 149
7.5.1 Bromine fluoride and bromine chloride 149
7.5.2 Compounds containing bromine–oxygen bonds 150
7.5.3 Compounds containing bromine–nitrogen bonds 151
7.5.4 Compounds containing bromine–carbon bonds 153
7.5.5 Metal halides and related compounds as reagents or catalysts for bromination 153

7.6 Secondary product-determining pathways in bromination 154

8 The iodination of unsaturated compounds 159
8.1 Introduction 159
8.2 Iodination by molecular iodine, and by iodine chloride 161
8.3 Iodine carboxylates 166
8.4 Reagents having iodine–nitrogen bonds 168
8.5 Kinetic participation of the nucleophile by attack on the carbocationic centre; mechanisms of the ‘Ad3’ type 169
8.5.1 Iodination of acetylenic compounds 169
8.5.2 Intramolecular kinetic participation by nucleophilic neighbouring groups 171
Contents

8.5.3 Iodine fluoride and iodine azide as reagents for addition 172
8.6 Iodination in strongly acidic conditions 174
8.7 Iodination in the ortho-position 175

9 Miscellaneous electrophilic halogenations, particularly of compounds containing 'active hydrogen'
9.1 Introduction 177
9.2 Kinetic forms for the acid-catalysed halogenation of ketones in hydroxylic solvents 180
9.3 Structural influences in the acid-catalysed halogenation of ketones 184
9.4 Acid-catalysed halogenation of aldehydes 188
9.5 Acid-catalysed halogenation of carboxylic acids and their esters; of acid halides, and of acid anhydrides 190
9.6 Acid-catalysed halogenation of aliphatic nitro-compounds 192
9.7 Base-catalysed halogenations 192

10 Electrophilic halogenation of some aromatic heterocyclic systems
10.1 Introduction 195
10.2 Activated aromatic heterocyclic compounds 196
10.2.1 Pyrrole, furan, thiophene and their derivatives 196
10.2.2 Benzo-derivatives of pyrrole, furan and thiophene 199
10.2.3 Dibenzo-derivatives of pyrrole, furan and thiophene 201
10.2.4 Imidazole, pyrazole, thiazole and related compounds 202
10.3 Deactivated aromatic heterocyclic compounds 204
10.3.1 General and theoretical considerations 204
10.3.2 Halogenations with sources of 'positive halogen' under strongly acidic conditions 206
10.3.3 Halogenations involving addition–elimination sequences 209
10.3.4 Halogenations with rearrangement 212

References 213
Index 223
Preface

The separation of the chemistry of aromatic systems from that of other unsaturated organic compounds is convenient for some purposes. It tends, however, to set up a number of artificial barriers; for example, between systems which 'should' substitute and those which 'should' add; and between reactions involving 'Wheland' intermediates and those involving carbocationic intermediates. The result too often constrains our attention into paths which become unsatisfactory, particularly when the reactions of halogens with unsaturated compounds are considered.

My interest in these processes was first stimulated by association with the late Professor P. W. Robertson, of Victoria University College in the University of New Zealand. This book, which is intended in part as a tribute to his inspiration, is an attempt to survey organic electrophilic halogenations and to illustrate the variety of ways in which carbocationic character can be developed in such reactions. General principles are emphasised; details are given only where necessary for illustration, and no attempt has been made to be exhaustive. Attention has been drawn wherever possible, directly or by inference, to the potential preparative significance of mechanistic findings. References are usually to recent articles, and are not intended to attribute priorities for ideas or for findings. Although many references are made to reviews, important recent work has necessitated rather extensive documentation in some areas.

I am immediately indebted to Professor R. C. Cambie and to Dr B. E. Swedlund for discussions of their recent work; and to Professor K. Schofield for his valued comments, criticisms and advice. This survey would have been much more imperfect without the help, encouragement and stimulation which I have had over the years from the many research workers and colleagues with whom I have been associated scientifically.

Mrs A. B. Bell typed the manuscript, and her help is much appreciated. I thank also the Syndics of the Cambridge University Press for the invitation to write this book, and the Council of the University of Auckland for refresher leave which made the undertaking possible.

P. B. D. de la Mare

Auckland, New Zealand, 1975