Index

Abbc, 24, 32
kits to illustrate theory 28
treatment of image formation 24–31, 67
aberrations 63–8, 75
in condenser 7
sign of 64
see also under individual aberrations
absorbance 60
absorbing objects see under objects
achromatic doublets 63–4
objectives 65
acridine orange 44, 76
adhesion sites, cell 38, 45, 60–1
Airy disc 20–1, 23, 80–1
demonstration of 21, 75
and objective testing 67–8
amplitude 13, 78
analyzer 48
antibodies, fluorescent 40, 44
antigens, location of 44
anti-reflection coatings 7, 42
aperture, numerical see numerical aperture
aperture stop 4, 33
alignment of 6–7
and contrast 32
apochromatic objectives 64
astigmatism 65–9
in observer’s eyesight 69
in secondary image 58
autofluorescence 40
auxiliary condenser lens 69, 72
axes, fast and slow 49–50
long and short 52, 76
vibration 46, 49–50

Bacillus megaterium 37, 76
back focal plane 4–5, 37
diffracted spectra in 27, 29, 33, 67
background level, and Abbe treatment 25–6, 38, 82
in fluorescence microscopy 42
in phase microscopy 33–6
in polarizing microscopy 48
from scattered light see scattering, unwanted
subtraction of 53
bacterial flagella 37, 73
bacteria, observation of 33, 37, 65, 76
banded field 58
band-pass filters 41
barrel distortion 65–7, 69
barrier filters 42–3
beam combiners 55, 57–8, 62
beams, ordinary and extraordinary 56
reference 57–8, 60
beam splitters, chromatic 42–3, 45, 60
for interference microscopy 54, 56–8
for photomicrography 71
Bertrand lens 6
Bessel functions 80
binoculars 42, 64
birefringence
of chromosomes 50
of crystals 48, 58, 76
definition of 49
of fibres 48–50, 53, 76
form and intrinsic 48, 53
magnitude of 50, 52
measurement of 50–3, 76–7
in plastic films 77
sign of 49–50, 52–3
blooming of lenses 42
bright-field microscopy 7, 34, 60
class experiments in 75
brightness 9, 13
calcium fluoride see fluorite
cameras 2, 42, 64, 70–2
cell adhesion sites see adhesion sites, cell
cells
epithelial 56, 58, 77
nerve 37, 44
cell spindle formation 46
Chlamydomonas 76
chromatic aberration 12, 63–4
lateral 65
Index

chromatic beam splitters 42–3, 45, 60
chromosomes, birefringence of 50
circle of least confusion 65
class experiments 74–7
cleaning of components 7, 72
coatings, anti-reflection 7, 42
cohere
ence of illumination 24, 28
of waves 18, 78–9
colour contrast 54, 56, 73
colours
with first-order red plate 52–3
interference 45, 61
perceived 10, 17
coma 65–6, 67–8
compensating eyepieces 64–5, 69, 72
compensators 16, 50–3, 58
first-order red plate 52–3, 77
quartz wedge 51–3, 58
Senarmont (quarter-wave plate) 58
components of a vector 47
compound microscopes 4, 75
centration of dry mass 59–60
condenser iris see aperture stop
condensers 4
aberrations of 7
alignment of 6–7, 38
auxiliary lenses for 69, 72
cleaning of 7, 72
dark-field 38, 73
and illumination 4, 75
long working distance 68
numerical aperture of 28, 67–9, 73
and resolution 27–8
contrast 32–3
in colour 54, 56, 73
in dark-field microscopy 73
enhancement of by video techniques 53
positive and negative 36
converging lenses 2, 63
correction collars 64
coverslips
aberration due to 64–5, 69
scale of thickness for 69
critical angle 61
critical illumination 4
crosshairs 70
crown glass 64
crystals
birefringence of 48, 76
diffraction from 29–30
in the interferometer microscope 58
curvature of field see under field
dark-field illumination 6, 40, 42
condensers for 38, 73
dark-field microscopy 32, 37–8, 73
class experiments in 76
defocusing and contrast 32–3
depth of field 2, 23
depth of focus 1
diatoms 31, 67
dichroic mirrors see chromatic beam splitters
dichroism 47, 53
differential interference contrast (DIC) see under interference microscopy
diffraction
from an aperture 18–21, 80–1
class experiments in 75–6
from a complex object 24–5
from dust particles 20
gratings 26, 31, 32, 75
masks 75
optical and X-ray 9, 24, 29–31
patterns, scale of 20, 23
spectra 27, 32–6
see also Airy disc and Young's experiment
diffusing screens 4
discharge lamps see under lamps
dispersion 11, 63
distortion
astigmatic 58
barrel and pincushion 65–7, 69
in dark-field microscopy 38
due to limited aperture 25, 27, 38
diverging lenses 63
DNA 45, 50, 76–7
double labelling 44
double prisms 54–5
doublets, achromatic 63–4
dry weight see mass
dust and dirt 4, 7, 20, 72
electric fields 10, 46–8
electromagnetic waves 10
electron micrographs, analysis of 9, 29–30
electron microscopy 22, 46, 73
cromatic aberration in 69
lenses for 23, 69
resolution limit of 23
section thickness for 60, 77
spherical aberration in 64
electrons, equivalent wavelength of 23
empty magnification 22
energy 9, 18, 34, 78–9
conversion 40–1
distribution in fringes 80
epi-fluorescence 42–3
epithelial cells 56, 58, 77
erthrocytes, haemolysis of 76
evanescent waves 61
excitation, filters for 42
Index

89
effect on contrast of 32–3
form birefringence 48, 53
Fourier analysis 24–5, 82
free space 11
frequency 10–13
changes in fluorescence 40
fringes
in quartz wedge 51, 58
in Young’s experiment 19–20

geometrical optics 1–4
class experiments in 74–5
ghost images 58
glare see background level
glass
filters made of, 41
non-fluorescent 43
types of 63–4
glycerol, for mounting 77
grain size see under photomicrography
gratings 70, 72
diffraction 26, 31, 32, 75
phase 32
two-dimensional 75
ground-glass screens 70

hair 77
half-silvered mirrors 18, 60
half-wave plates 57
halo effect see under phase contrast
microscopy
heat filters 42
Hertz 10
Huygens’ wavelets 19, 84

illumination
built-in and external 6
coherence of 24, 28
condensers and 4, 75
cone of, 4, 28, 33, 38
critical 4
incident- and transmitted-light 42–3, 60
Köhler 1, 4–6, 37
oblique 32
for photomicrography 72
and resolution 1, 4
stopped-down 38, 67
see also background level and dark-field
illumination
images
dark-field 38
distortion of 25, 27, 38
formation of, by Abbe theory 24–31, 67
ghost 58
at infinity 2, 70
primary and secondary 58–9

excitation (cont.)
incident- and transmitted-light 42–3
exposure times 23, 71
extinction 50–1
extraordinary beam 56
eye, damage to 42
pupil of 4–5, 23
resolution limit of 22–3
viewing by 2
eyepieces 4–5, 69
adjustment of 6
cleaning of 7, 72
compensating 64–5, 69, 72
projection 70–2
fading of fluorescence 43
fast axis 49–50
fibres, birefringence of 48–50, 53, 76
fibroblasts 44, 61
field
banded 58
curvature 65, 67, 72
depth of 2, 23
electric and magnetic 10, 46–8
stop 6
of view 8, 64, 70
filamin 44
film, photographic see photomicrography
filters
barriers and excitation 42–3
glass 41
heat 42
interference 41–2, 45
monochromatic 71
first-order red plate 52–3, 77
FITC 43, 45–5
flagella, bacterial 37, 73
flash units 72
flint glass 64
fluorescein isothiocyanate see FITC
fluorescence 40
epi–42–3
fading and quenching of 43
imuno–43–5
fluorescence microscopy 40–5, 73
class experiments in 76
with total internal reflection 45, 61
fluorescent antibodies 40, 44
fluorite 64
fluorochromes 40, 44
flying spot microscopes x, 59
focal contacts, see adhesion sites
focal length, and chromatic aberration 63–4
definition of 1
determination of 8, 74
focus, of a converging lens 1
de depth of 1
Index

images (cont.)
projection of 8
quality of 72
real and virtual 2, 22, 74
reconstruction of 27, 29–30
see also contrast
immersion liquids
and condensers 69
removal of oil 7
and resolution 21–2, 28–9, 81
for specimens 84
immersion objectives 69
immunofluorescence 43–5
incident-light illumination 42–3, 60
incoherent light 18
increment, specific refractive 59–60
infinity, images at 2, 70
infrared radiation 42
intensity 9, 13, 18, 78
interference
colours due to 45, 52, 61
filters 41–2, 45
fringes 19–20
of waves 13–15, 33, 46
interference microscopy 9, 16, 54–62
class experiments in 77
interference contrast (Nomarski), 53, 54–6, 62, 73
interference reflection 60–1
interferometer (Jamin–Lebedeff) 33, 36, 54, 56–60, 62, 73
intrinsic birefringence 48, 53
inverted microscopes 60
iris diaphragms 38; see also aperture and field stops

Jamin–Lebedeff see under interference microscopy

Köhler illumination 1, 4–6, 37

λ plate 56
lamps
alignment of 4
mercury and other discharge 10, 18, 42–3, 45, 72
tungsten 43, 45
lasers 10
lateral chromatic aberration 65
lenses
Bertrand 6
cement between 7, 66
cleaning of 7, 72
coating of 7
converging and diverging 2, 63
electron 23, 69
meniscus and planoconvex 64
thin and thick 63
light 9–17
infrared 42
monochromatic 10, 16, 51–2, 58, 60, 71
polarized 11, 46, 54
ultraviolet 40–2
velocity of 11, 16
wavelength of 12, 16, 20, 37, 40
white 23, 51–2, 60
see also scattering of light
luminescence 40
magnetic fields 10
magnification 2–4, 8
and chromatic aberration 63–5
empty 22
limits to 22–3
in photomicrography 71–2
magnifying glasses 2–4, 8
masks
for diffraction experiments 75
for optical filtering 29
mass, measurement of 16, 59–60, 73, 77
meniscus lenses 64
mercury lamps, see under lamps
micrometers, stage 72
micrometry x
microscopes
alignment of 1–7, 36–7
care of 7, 72
choice of 73–4
component markings 67–9
compound 4, 75
design of 63–9
focusing of 7, 32
inverted 60
resolution limit of 18–29, 55–6
scanning or ‘flying spot’ x, 59
total internal reflection 61
ultraviolet 22
see also bright-field, dark-field, electron,
fluorescence, interference, phase
contrast and polarizing microscopy
minimum viewing distance 2
mirrors, half-silvered 18, 60
monochromatic light 10, 16, 51–2, 58, 60, 71
muscle
study by polarizing microscopy 46, 48
thin filaments from 29

nanometres 12
nerve cell cultures 37, 44
Nomarski see under interference microscopy
nucleic acids see DNA and RNA
numerical aperture 21
of condensers 28, 67–9, 73
do electron lenses 23
for fluorescence microscopy 43
of objectives 69
and photomicrography 72
and resolution 21–2, 27–8, 71

objectives 3–5
achromatic 64–5
apochromatic 64
cleaning of 7, 72
dark-field 38
flat-field 65, 72
for fluorescence microscopy 43
immersion 69
markings on 69
parfocal 7
phase 34, 37, 69
testing of 66–8

objects
absorbing 6, 9, 25–7, 32, 34, 78
transparent 32, 36, 38–9, 54, 73
Ohm’s law 78
oil droplets 58, 77
oil, immersion see immersion liquids
o.p.d. see optical path difference
optical benches 74
optical density see absorbance
optical diffraction 9, 24, 29–30
optical filtering 29–30
optical path difference 15–16
optics see geometrical, physical and polarizing optics
ordinary beam 56
orientation of molecules 48, 73, 77

parallax 71
parfocal objectives 7
particles and waves 9, 16
path difference, optical 15–16
period 13
pH and quenching 43
phase angle 14
annulus 33, 69
difference 14–15, 79
grating 32
objective 34, 37, 69
plate 34–6
telescope 6–7, 27, 33, 37
phase contrast microscopy 24, 33–7, 39, 42–3, 73
alignment procedure for 36–7
alternatives to 54, 56, 73
class experiments in 76
halo effect in 34, 36, 54, 56, 73

phosphorescence 40
photoelectric exposure control 71
photometers 71
photomicrography 9, 65, 70–2
exposure times 23, 71
films for 71
focusing for 2, 70–1
and grain size 22–3, 71
illumination for 72
magnification in 71–2
photons 18, 79; see also quanta
physical optics 9
pincushion distortion 65–7, 69
pinholes 21, 23, 67
Planck’s constant 40
planoconvex lenses 64
polarization of waves 11, 57
polarized light 11, 46, 54
polarizer 47
polarizing microscopy 9, 16, 46–53, 73
class experiments in 76–7
see also birefringence, compensators and fibres
polarizing optics
in fluorescence microscopy 42, 46
in interference microscopy 46, 54–9
in interference reflection 61
Polaroid 47
cameras 71
pollen grains 77
potato starch grains 77
primary image 58–9
prisms, double 54–5
projection eyepieces 70–2
proteins 45, 60
pupil of the eye 4–5, 23

quanta 10, 18, 40; see also photons
quarter-wave plate 58
quartz wedge 51–3, 58
quenching 43

radians 14
radiation see light
Rayleigh criterion 21–2, 24, 27, 81–2
rays, image-forming and illuminating 4–6
real images 2, 74
red plate, first-order 52–3, 77
reference beam 57–8, 60
reflection
from heat filters 42
from lens surfaces 61
total internal 38, 45, 61
refraction
at boundary 11, 28, 61
double 54
Snell’s law of 11, 56
Index

refractive increment, specific 59–60
refractive index 9, 11, 13
resolution limit 18–29, 55–6
by Abbe approach 27–9
condenser’s effect on 27–8
of electron microscopes 23
of the eye 22
and immersion liquids 21–2, 28–9
of magnifying glass 4
and photography 22–3, 71
by Rayleigh criterion 21–2, 24, 27, 81–2
of X-ray diffraction 30
resolving power see resolution limit
resultants 14, 78–9
rhodamine 41, 44
RNA 44, 60
rotation of plane of polarization 57
sandwich technique 44
saponin 76
scanning devices x, 59
scattering of light
from points of contact 38
by small objects 39
unwanted 4, 6–8, 41–3
screens, diffusing 4
secondary image 58–9
secondary wavelets see Huygens’ wavelets
self-luminous sources 24
Sénarmont compensator 58
sine 54–5, 58
sines and cosines 14, 82
sinusoidal waves 14
components 24–7
slow axis 49–50
Snell’s law 11, 56
sound waves 10–11, 16
sources, self-luminous 24; see also lamps
specific refractive increment 59–60
specimens see objects
spectra
absorption and emission 41
diffraction 27, 32–6
sperm
bull 77
ram 58
squid 77
spherical aberration 64–5, 67–9
stage micrometer 72
stains
uptake of 60
use of 9, 40
starch grains 77
stars 24
star test see objectives, testing of
stereology x
stop
aperture, see aperture stop
field 6
stray light, see scattering, unwanted
sugars 60
telescopes 20, 24
Tetrahymena 76
thickness, measurement of 59–60, 73, 77
thin and thick lenses 63
total internal reflection, in dark-field
condenser 38
total internal reflection microscopy 61
transmitted-light illumination 42–3
transparent objects see under objects
transverse waves 11
tryptophan 40
tube length 69
tungsten lamps see under lamps
ultraviolet light 40–2
ultraviolet microscopy 22
urea crystals 76
van Leeuwenhoek 4
vectors 14–15
components of 47
for phases 34–6
for polarizations 47, 55
sum of 14, 78–9
velocity of light 11, 16
vibration axis 46
vibration, effect of 72
video techniques 53
virtual images 2, 22, 70
virus antigens 44
wavefronts 12, 19
wavelength 12–13
of electrons 23
of light 12, 16, 20, 37, 40
of X-rays 30
waves 10–17
electromagnetic 10
evanescent 61
interference of 13–15, 33, 46
and particles 9, 16
plane 19
polarization of 11
rectangular 24–5
sinusoidal 13
sound 10–11, 16
transverse 11
see also under light
white light 23, 51–2, 60
Index

X-rays
 diffraction of 9, 24, 29–31
 wavelength of 30

Young’s experiment 19–20, 26–7, 79–80
 class demonstration of 75

Zernicke 32, 34
 zero-order component 25, 38
 phase shift of 35