LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES

Managing Editor: Professor I.M. James,
Mathematical Institute, 24-29 St Giles, Oxford

1. General cohomology theory and K-theory, P. HILTON
2. Algebraic topology, J.F. ADAMS
3. Commutative algebra, J.T. KNIGHT
4. Integration and harmonic analysis on compact groups, R.E. EDWARDS
5. Elliptic functions and elliptic curves, P. DU VAL
7. New developments in topology, G. SEGAL (ed.)
10. An introduction to topological groups, P.J. HIGGINS
11. Recursion in finite groups, T.M. GAGEN
12. Differential germs and catastrophes, Th. BROCKER & L. LANDER
13. A geometric approach to homology theory, S. BUONCRISTIANO, C.P. BOURKE & B.J. SANDERSON
14. Sheaf theory, B.R. TENNISON
15. Algebraic topology of linear operators, A.M. SINCLAIR
16. Parallelisms of complete designs, P.J. CAMERON
17. The topology of Stiefel manifolds, I.M. JAMES
18. Lie groups and compact groups, J.F. PRICE
19. Transformation groups: Proceedings of the conference in the University of Newcastle-upon-Tyne, August 1976, C. KOSNIOWSKI
20. Skew field constructions, P.M. KOHN
21. Brownian motion, Hardy spaces and bounded mean oscillations, K.E. PETERSEN
22. Pontryagin duality and the structure of locally compact Abelian groups, S.A. MORRIS
23. Interaction models, N.L. BIGGS
24. Continuous crossed products and type III von Neumann algebras, A. VAN DAELLE
25. Uniform algebras and Jensen measures, T.W. CAMELIN
26. Permutation groups and combinatorial structures, N.L. BIGGS & A.T. WHITE
27. Representation theory of Lie groups, M.F. ATIYAH et al.
28. Trace ideals and their applications, B. SIMON
29. Homological group theory, C.T.C. WALL (ed.)
30. Partially ordered rings and semi-algebraic geometry, G.W. BRUMFIEL
31. Surveys in combinatorics, B. BOLLOBAS (ed.)
32. Affine sets and affine groups, D.G. NORTHCOTT
33. Introduction to Hp spaces, P.J. KOOSIS
34. Theory and applications of Hopf bifurcation, B.D. HASSARD, N.D. KAZARINOFF & Y.H. WAN
35. Topics in the theory of group presentations, D.L. JOHNSON
36. Graphs, codes and designs, P.J. CAMERON & J.H. VAN LINT
37. Z/2-homotopy theory, M.C. CRABB
38. Recursion theory: its generalisations and applications, F.R. DRAKE & S.S. WAINER (eds.)
39. p-adic analysis: a short course on recent work, N. KOBLITZ
40. Coding the Universe, A. BELLER, R. JENSEN & P. WELCH
41. Low-dimensional topology, R. BROWN & T.L. THICKSTUN (eds.)
49. Finite geometries and designs, P. CAMERON, J.W.P. HIRSCHFELD & D.R. HUGHES (eds.)
50. Commutator calculus and groups of homotopy classes, H.J. BAUES
51. Synthetic differential geometry, A. KOCK
52. Combinatorics, H.N.V. TEMPERLEY (ed.)
53. Singularity theory, V.I. ARNOLD
54. Markov processes and related problems of analysis, E.B. DYNKIN
55. Ordered permutation groups, A.M.W. GLASS
56. Journees arithmetiques 1980, J.V. ARMITAGE (ed.)
57. Techniques of geometric topology, R.A. FENN
58. Singularities of smooth functions and maps, J. MARTINET
59. Applicable differential geometry, F.A.E. PIRANI & M. CRAMPIN
60. Integrable systems, S.P. NOVIKOV et al.
61. The core model, A. DODD
62. Economics for mathematicians, J.W.S. CASSELS
63. Continuous semigroups in Banach algebras, A.M. SINCLAIR
64. Basic concepts of enriched category theory, G.M. KELLY
65. Several complex variables and complex manifolds I, M.J. FIELD
66. Several complex variables and complex manifolds II, M.J. FIELD
67. Classification problems in ergodic theory, W. PARRY & S. TUNCEL
68. Complex algebraic surfaces, A. BEAUVILLE
69. Representation theory, I.M. GELFAND et. al.
70. Stochastic differential equations on manifolds, K.D. ELWORTHY
London Mathematical Society Lecture Note Series : 54

Markov Processes and Related Problems of Analysis

E.B. DYNKIN
Professor of Mathematics
Cornell University
CONTENTS

Preface vi

I Markov processes and related problems of analysis (RMS 15:2 (1960) 1-21) 1

II Martin boundaries and non-negative solutions of a boundary value problem with a directional derivative (RMS 19:5 (1964) 1-48) 25

III Boundary theory of Markov processes (the discrete case) (RMS 24:2 (1969) 1-42) 79

IV The initial and final behaviour of trajectories of Markov processes (RMS 26:4 (1971) 165-185) 123

V Integral representation of excessive measures and excessive functions (RMS 27:1 (1972) 43-84) 145

VI Regular Markov processes (RMS 28:2 (1973) 33-64) 187

VII Markov representations of stochastic systems (RMS 30:1 (1975) 65-104) 219

VIII Sufficient statistics and extreme points (Ann. Prob. 6 (1978) 705-730) 259

IX Minimal excessive measures and functions (Trans. AMS 258 (1980) 217-244) 285
Preface

Most of the papers compiled in this volume have been published in Uspekhi Matematicheskikh Nauk and translated into English in the Russian Mathematical Surveys. The core consists of the series [IV], [V], [VI], [VII] presenting a new approach to Markov processes (especially to the Martin boundary theory and the theory of duality) with the following distinctive features:

1. The general non-homogeneous theory precedes the homogeneous one. This is natural because non-homogeneous Markov processes are invariant with respect to all monotone transformations of time scale — a property which is destroyed in the homogeneous case by the introduction of an additional structure: a one-parameter semi-group of shifts. In homogeneous theory, the probabilistic picture is often obscured by the technique of Laplace transforms.

2. All the theory is invariant with respect to time reversion. We consider processes with random birth and death times and we use on equal terms the forward and backward transition probabilities, i.e., the conditional probability distributions of the future after t and of the past before t given the state at time t. (This is an alternative to introducing a pair of processes in duality defined on different sample spaces.)

3. The regularity properties of a process are formulated not in topological terms but in terms of behaviour of certain real-valued functions along almost all paths. Specifying a countable family of the base functions, we introduce a topology in the state space such that almost all paths have certain continuity properties. However this can be done in many different ways with different exceptional sets of paths. It is reminiscent of the situation with coordinate systems: there exist many of them and we have no reason to prefer any special one.

Two recent papers [VII] and [VIII] are closely related to the main series.

An earlier article [I] (its title is used as the title of the volume) presents the state of the theory of Markov processes in 1959. At this time the theory was in the process of extensive development and Markov processes attracted researchers around the world. The article is a report on the work done by a group of young mathematicians at Moscow University (almost all of them were in their twenties). A number of open problems and prospective directions have been mentioned in the article. Two of them: additive functionals of Markov
Preface

processes and applications of Ito’s stochastic differential equations to partial differential equations — became a major area of research in subsequent years. Three years later the progress was reported in monograph [1].

The boundary theory of Markov processes is one of the principal subjects of the volume. In [II] a boundary value problem with a directional derivative for the Laplace equation is studied. At that time the general theory had not been sufficiently developed and the first sections of [II] are devoted to adjustment of Martin’s method.

A general boundary theory is presented in [IV] and [V]. It is based on a theorem concerning the decomposition of certain classes of measures into extreme elements. An improved version of this theorem with applications to a number of other problems is contained in [VIII]. The key role is played by a special type of sufficient statistics. Under minimal assumptions on a transition function, the corresponding entrance and exit spaces are evaluated in [IX] using a combination of the boundary theory and the ergodic theory.

The relation of the general boundary theory to Hunt’s boundary theory for Markov chains can be easily seen in an earlier paper [III]. The main difference is in the way a Markov chain (X_t, P) with given transition probabilities is associated with an excessive measure μ. In Hunt’s theory $\mu(x)$ is the expected number of hittings x by X_t during the life interval $[\alpha, \beta]$. In our approach $\mu(x) = P \{ \alpha \leq t, X_t = x, t \leq \beta \}$. This modification makes possible the generalization presented in [IV] and [V].

Papers [VI] and [VII] are devoted to the problem of constructing Markov processes whose paths have certain regularity properties. The class of regular processes investigated in [VI] is close to the class of right processes introduced by Meyer and studied by Getoor [4]. The theory of Markov representations of stochastic systems developed in [VII] presents an alternative to the classical theory of duality due to Hunt, Kunita, Watanabe, Getoor, Sharp and others. The relation between both theories is discussed in [2]. Additive functionals of stochastic systems have been studied in [3]. Interesting results in spirit of [VII] have been obtained by Kuznecov [5], [6], [7], [8], and [9] and Mitro [10], [11].

For this edition the author has revised the entire text of the English translations. A few slips in the originals (some of them noticed by Kuznecov) have also been corrected.

References

Preface

Roman figures refer to the articles collected in this volume (see the table of contents).