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v.

Preface.

These notes, in two parts, are intended to provide a self­

contained and relatively elementary introduction to functions of

several complex variables and complex manifolds. They are based on

courses on complex analysis that I have given at symposia at the

International Centre for Theoretical Physics, Trieste, in 1972 and 1974

and various postgraduate and seminar courses held at Warwick and Sydney.

Prerequisites for the reading of Part I are minimal and, in particular,

I have made no significant use of differential forms, algebraic topology,

differential geometry or sheaf theory. As these notes are primarily

directed towards graduate and advanced undergraduate students I have

included some exercises. There are also a number of references for

further reading which may serve as a suitable starting point for

graduate assignmen.ts or projects. I have endeavoured to give at least

one reference for any result stated but not proved in the text. For

the more experienced reader, who is not a specialist in complex analysis,

I have included references to related topics not directly within the

scope of these notes.

My aim in these notes was to give a broad introduction to

several complex variables and complex manifolds and, in particular,

achieve a synthesis of the theories of compact and non-compact complex

manifolds. This approach is perhaps best exemplified by the conclusion

of Part II where we present Grauert's pseudoconvexivity proof of the

Kodaira embedding theorem. I would hope that parts I and II together

comprise a useful introduction to more advanced works on complex

analysis. Notably, the books by Grauert and Remmert on Stein spaces [lJ

and coherent analytic sheaves (forthcoming) and that of Griffiths and

Harris on the Principles of Algebraic Geometry [lJ.

Chapter 1 of the text is devoted to functions of one complex

variable and Riemann surfaces with particular emphasis on the a-operator

and the construction of meromorphic functions with specified pole and

zero sets, themes that run throughout parts I and II. The presentation

is geared towards generalisations to several variables and complex

manifolds and most of the results, though perhaps not the proofs,

should be familiar to all readers. Section 5 of the Chapter (on vector

bundles) can safely be omitted on first reading. In Chapter 2, we
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vi.

develop the basic theory of analytic functions of several complex

variables. Amongst the results and concepts discussed are Hartog's

theorem on extension of analytic functions, domains of holomorphy,

holomorphic convexivity, pseudoconvexivity, Levi pseudoconvexivity and

the Levi problem, the Bergman kernel function, the Cousin problems. In

section 5, I have given a fairly complete treatment of boundary

invariants of domains in lRn with C2 boundary. In part this was because

of the incomplete treatment of the topic in other texts on several

complex variables. In Chapter 3 we prove the Weierstrass Division and

Preparation theorems and give applications to the algebraic structure of

power series rings and the local structure theory of analytic sets.

Here, as elsewhere in the notes, I have concentrated on the structure

theory of hypersurfaces leaving the much harder general structure theory

of analytic sets to the references (for example, Gunning-Rossi [lJ,

Narasimhan [3J, Whitney [lJ and the forthcoming text by Grauert and

Remmert on coherent analytic sheaves). The chapter concludes with a

section on modules over power series rings, the reading of which may be

deferred until Chapter 6 of Part II. In Chapter 4 we describe a number

of basic examples of complex manifolds, both compact and non-compact,

and conclude with sections on the structure theory of analytic

hypersurfaces and blowing up.

Part II of these notes consists of three chapters which we now

briefly describe. Chapter 5 covers calculus on complex manifolds

including the construction of the a-operator and the Dolbeault­

Grothendieck lemma. Chapter 6 is a self-·contained introduction to the

theory of sheaves in complex analysis. Chapter 7 is devoted to

coherence and the cohomology vanishing theorems of Cartan, Grauert and

Serre. Applications include Grauert's proof of the Kodaira embedding

theorem.

When I originally started these notes I had intended to

include chapters on complex differential geometry and the elliptic

theory of the complex Laplace-Beltrami operator applied to compact and

non-compact complex manifolds. For reasons of length I eventually

decided to omit these topics from Parts I and II. However, the reader

will find references to chapters 8 through 12 scattered throughout the

text. At some future time I hope it may be possible to complete the

project with these additional chapters.
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vii.

A few words of guidance to the reader of Part I: There is

more than enough material in these notes for a one semester course.

As we make the most substantial use of Chapter 3 in Part II, the reader

may prefer to omit Chapter 3 at first reading, together with those

parts of Chapter 4 on meromorphic functions and analytic sets (in

particular, section 6). An alternative approach would be to read

Chapter 3 (omitting section 6) and conclude with selected sections of

Chapter 4 including section 6 on the structure theory of analytic

hypersurfaces (this last section plays an important role in Part II).

I would like to acknowledge the great debt lowe in the

preparation of these notes to many authors. I especially would like to

mention the books by Grauert and Rerr~ert on Stein Spaces, Gunning and

Rossi on Analytic functions of Several Complex Variables and Hormander

on Complex Analysis in Several Variables. This last work has perhaps

had the most decisive influence on the final form of my lecture notes.

On a more personal level, it is a great pleasure for me to

express thanks to Jim Eells for interesting me in the field of complex

analysis back in 1970 and for his continued help and encouragement

since then. Thanks also to Tzee~Char Kuo for his advice and

encouragement and to the postgraduate students here at Sydney who have

been so helpful with their stimulating comments, assignments and

critical questioning. Last, but by no means least, may I thank Cathy

Kicinski for her beautiful job of typing the bulk of my manuscript.

Mike Field

Sydney,

September, 1981.
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ix.

Notations and Conventions.

Throughout these notes lR
n

will always denote real n-space and

<t n complex n-space. We shall often identify <t n and lR
2n

by letting
n 2n

(zl' · • • ,zn) E <t correspond to (xl' Yl ' • · • ,xn ' yn) E:R ,where

z. = x
j

+ iy., 1 ~ j ~ n. We let <to denote the multiplicative group of
J J

non-zero complex numbers. We let 1l, IN denote the integers and

positive integers respectively.

If E, F are finite dimensional vector spaces over the field lK,

we let L][( (E ,F) denote the lK -vector space of lK -linear maps from E to

F. We often drop the subscript ][( when it is implicit from the context.

If lK = ]R, we set E' = LlR (E, lR) and if I< = a, we set E* = L<t (E ,a) .
If A E L

lR
(E ,F), we let A' E L

lR
(F' ,E') denote the transpose of A. We

let A* denote the transpose of A in case A is a-linear. We let GL(E)

denote the group of linear isomorphisms of E. In case E = lRn , we often

use the notation GL(n, lR) for GL(lR
n

). Similarly, we often write

GL(n,~) instead of GL(an).

A dOmain will always refer to a connected open subset.

If n is a domain in an, E is a finite dimensional vector space

(over lR or ct) and f: n ~ E we say that f is Cr if it is r-times

continuously differentiable. That is, we identify <t n with lR2n and

require that all partial derivatives of f of order less than or equal

to r exist and are continuous on n. If f is Cr for all positive

integers r, we say that f is COO (or smooth). We let Cr(n,E) denote

the space of all E-valued Cr maps on n. In case E = <t we abbreviate

to Cr (n) and if E = lR, we abbreviate to c.;. (n) .

If f is a vector valued map we define the (closed) support of

f, supp(f), to be the closure of the set of points where f is non-zero.

If supp(f) is compact we shall say that f has compact support. We

denote the set of Cr E-valued maps on a domain n which have compact

support by Cr(n,E).
c

Suppose that n is a domain in an or lRn and f E Cr (n, E) ,

r > O. We use either of the notations nSf nSf(x) to denote the sth.x'
derivative of f at x. Thus, nSf will be an s-linear E-valued map

x

(see also nieudonne [lJ and Field [lJ).
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x.

Given r > 0, Z E ~, we let Dr(z), Dr(z) denote the open and

closed discs, centre z, radius r in ~ respectively. We let Dr(z)*

denote the punctured disc Dr(z) \ {z}.

IIzll (IIz . 12~ "Euclidean norm"
i=l 1 J'

For r > 0, we let D(z;r), E(z;r) respectively denote the open discs,

centre z, radius r in (In relative to norms I I, II II. Given,

r 1 , ... ,rn > 0, we let D(z;r1 , •.. ,rn) denote the open po1ydisc

n
--'--I D (z.) c (In.
j=l r j J

If f is a continuous ~- or ]R -valued function defined on a

neighbourhood of a compact set K, we define

suplf(x) I.
XEK

Other notations will be defined in the text. We remark here

only that from Chapter 5, CP(M) will refer to the space of smooth

differential p-forms on the differential manifold M and that from

Chapter 6, ct may also refer to the constant sheaf of complex numbers.

Finally, we remark that Hermitian forms are always complex

linear in the first variable.
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