
CHAPTER 1.

Introduction

FUNCTIONS OF ONE COMPLEX VARIABLE

Our aim in this chapter is to develop the familiar theories of

analytic functions of one complex variable and Riemann surfaces in a way

that generalises well to the several variable theory. In §3 we see how

the existence theory of the Cauchy-Riemann equations can be used to

prove the Mittag-Leffler theorem and also how the topology of domains in

a naturally enters into the proof of the Weierstrass theorem. In §§4,S

we show how the theory of holomorphic line bundles may be used to re

formulate some of the classical problems in Riemann surface theory. We

also define the Cauchy-Riemann equations on an arbitrary Riemann surface

and indicate how they are related to the problem of constructing mero

morphic functions with specified divisors. In an appendix we prove a

number of classical results, including the Runge approximation theorem.

We use the Runge theorem to construct solutions of the Cauchy-Riemann

equations.

§1. Analytic functions and power series

Let n be a domain in U. We recall that a function f: n ~ ~ is

said to be analytic or holomorphic if it is complex differentiable on n.
Writing f in real and imaginary parts, f = u + iv, analyticity implies

that u and v satisfy the Cauchy-Riemann equations on n:

dU/dX dV/dy; dU/dy -dV/dX •

Recalling that a real 2 x 2-matrix [a .. J induces a complex linear
1J

endomorphism of ~ if and only if all = a 22 and a12 = -a
2l

, we may

interpret the Cauchy-Riemann equations as saying that if f is analytic

then f is differentiable in the real sense and the (real) derivative of

f is everywhere a complex linear map (see, for example, Field [1;

Example 3, page l33J).

Let A(n) denote the set of all analytic functions on n.

We now introduce a pair of partial differential operators which,

together with their generalisations to several variables, will be of the

utmost importance in the sequel. We set
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a/az

For r ~ 1,

~(a/x - ia/ay); a/az ~(a/ax+ ia/ay).

2.

The significance of these operators may be gauged from

Lemma 1.1.1.
af/az o.

A function f E Cl(n) is analytic if and only if

Proof. The reader may verify that af/az = 0 iff the Cauchy

Riemann equations hold. Since f is assumed to be Cl , the Cauchy-Riemann

equations hold iff f is analytic. o

Next we recall the basic theorem on the local representation of

analytic functions by power series.

Theorem 1.1.2. Let f E A(n). Given ~ E nand r > 0 such that

f(z) L aj(z-t;)j, z E Dr(t;),
j=O

where a. = ajf/azj(~)/j!, and convergence is uniform on compact subsets
J

of Dr(~).

Remark. -1
Simple examples, such as f(z) = (1 - z) , n = a \ {I},

show that the power series at ~ need not converge on the whole of n.

C0 roll ary 1. 1.3. An analytic function is Coo.

Remark. Notice that A(n) = Kernel(a/az). Now alai is an

example of an elliptic differential operator and it can be shown that

the kernel of any elliptic operator consists of COO functions. We shall

return to this type of question in later chapters.

Coro11 ary 1.1.4.

Corollary 1.1.5. Let n be a domain in~. Suppose f E A(n) and

that at some point ~ E n, ajf/azj(~) = 0, j ~ O. Then f vanishes

identically on n.
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Proof. Let X = {z € n: ajf/azj = 0, all j ~ a}. X is

3.

open by the power series representation of analytic functions given by

Theorem 1.1.Z and X is certainly non-empty since ~ € X. Since X is the

intersection of the closed sets {z € n: ajf/azj(z) O}, X is also

closed. Since n is connected, X = n. o

Remark. Another way of stating this corollary is that the value

of an analytic function and all its derivatives at a single point of a

domain determine the function uniquely. This type of behaviour does not,

of course, hold for COO or continuous functions.

Proposition 1.1.6. (Uniqueness of analytic continuation). Let

U, V be connected open subsets of ~ and suppose U n V ~ 0. If f € A(U)

and h is an analytic extension of f to U uV (that is, h € A(U uV) and

hlU f), then h is unique.

Proof. If hI' hZ are analytic extensions of f to U u V then

hI - hZ is an analytic extension of the zero function on U to U u V.

Therefore, hI - hZ is identically zero by Corollary 1.1.5. 0

Remark. Once we have uniqueness of analytic continuation it is

natural to try to construct the largest domain to which any given analy

tic function may be extended. It turns out of cour~e that we have to

enlarge our class of domains to include Riemann surfaces spread over ~.

We return to this question in §4 of this chapter and again in §Z of

Chapter 6.

Exercises. These exercises are revision of basic theory of

functions of one complex variable. Proofs may be found in any of the

many introductory texts on complex analysis.

1) (Laurent series). Let f be analytic on the annulus

r < Iz - Zo I < R. Derive the Laurent series of f at zo'

n=-f-OQ
f(z) I an(z - zo)n, r < Iz -zol < R

n=-oo

. -1 J n+1where an = (Z1T1) f (~) / (~ - za) ds, r < s < R, and convergence
Is-zol=s

is uniform on compact subsets of the annulus.
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4.

2) (Cauchy·s inequalities). Continuing with the notation and

assumptions of question 1, show that if M(t) = sup{ If (z) I: Iz - Zo I t},

r < t < R, then

la I ~ M(t)/tn , n E 72 •
n

In particular, show that if f is holomorphic on the disc DR(zO) then

3) (Riemann removable singularities theorem). Suppose that f is

an analytic function in the punctured disc Dr (zO)* {z: 0 < Iz - Zo I < r}.

Show that a necessary and sufficient condition for f to extend analytic

ally to Dr(zO) is that f is bounded on some neighbourhood of Zoe (Use

the result of question 2).

4) (Open mapping theorem). Let f be analytic and not identically

zero on the domain U in~. Prove that f(U) is open in ~.

5) (Monodromy theorem). Let n be a domain in~, zo,yo E nand

suppose f is analytic on some neighbourhood U of Zoe Let C be a

continuous path in n parametrized by ~: [O,lJ ~ n with ~(O) = zo'

~(l) = YO. We say f can be analytically continued along C if we can

find discs Di = D (~(t.)), 0 = to << t k = 1, covering C, hi E A(Di ),
r i . 1

i = O, .•• ,k, such that hO = f on UnDO and hi = h i +l on Di n Di+1 , i ~ O.

Define fC(YO) to be hk(yO). Show that

a) fC(YO) depends only on C and not on any of the choices we

have made.

b) If C, C' are homotopic curves in n joining Zo to yo then

fC(YO) = fC'(YO)·

Give examples to show that if n is not simply connected and C, C' are

non-homotopic curves joining Zo to yo then fC(YO) may not equal fC'(YO).

has a maximum in n then f is constant.

6)

If If I

(Maximum principle). Let f be analytic on the domain n in ~.
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7) (Schwarz' lemma).

and If (z) I ~ l, ZED1 (0) ·

holds if and only if f(z)

5.

Suppose f E A(Dl(O)) and satisfies f(O) = 0

Then If(z) I ~ z and If'(O) I ~ 1. Equality

cz, where Icl = 1 (Hint: Apply the maximum

principle to the function f(z)/z).

§2. Meromorphic functions

Roughly speaking meromorphic functions are the analytic analogue

of rational functions and in this section we briefly review their

definition and elementary properties. Throughout the section n will

denote a domain in ~.

Let 1; E nand n'

expansion we have

n \ {Z;}. Suppose f E A(n'). By Laurent's

j=+oo

fez) L aj(z -l,;)j, z € Dr(l,;)* C 11.
j=-oo

There are three possibilities:

a) f is bounded on some neighbourhood of Z;. In this case a. = 0,
J

j < 0, and f extends uniquely to an analytic function on n

(Riemann removable singularities theorem).

b) f(z) ~ 00 as z ~ Z;. Here one can show that there exists a

strictly positive integer N such that a j = 0, j < -N and a_
N

~ O.

c) Neither a) or b) occurs (Z; is an essential singularity of f).

In case b), f is an example of a meromorphic function on n with

a single pole of order N at z;. We may write f(z) = u(z)/(z _Z;)N,

z E Dr(Z;)*, where u E A(Dr(Z;)*) and the power series of u at Z; is given

explicitly as the Laurent series of f at Z; multiplied by (z _Z;)N. We

may extend u analytically to n by taking u(z) = (z _Z;)Nf(z), z ~ Z;. In

this way we may represent f as the quotient u(z)/(z _Z;)N of analytic

functions defined on all of n.

There are some problems in giving a satisfactory general

definition of a meromorphic function. If we attempt to define a

meromorphic function on n as a quotient fIg, f,g E A(Q), g i 0, we are
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6.

faced with the difficulty that f and g may have infinitely many common

zeros. If this happens we canot cancel the zeros using the elementary

power series techniques of the previous paragraph to obtain the maximal

subdomain of n on which the meromorphic function is defined as an

analytic function. That is,the representation fIg may be rather non

canonical. We start by giving a definition that is rather special to

functions of one complex variable and then show how to reformulate the

definition in a way that generalises well to functions of several complex

variables.

Definition 1.2.1. We say that m isa meromorphic function on

n if there exists a discrete subset X of n such that

i) m is an analytic function on n \ x.

ii) Every point of X is a pole of m.

We notice that the definition excludes essential singularities

and so, for example, e-l/z would not define a meromorphic function on ~.

We denote the set of meromorphic functions on n by M(n).

Locally a meromorphic function can be expressed as a quotient of

analytic functions. That is, given m E M(n) and ZEn, we can find an

open neighbourhood U of Z and f,g E A(U) such that g is not identically

zero and mlU = fIg outside of any poles of m in U. Of course, if U does

not contain any poles of m, we can take g = 1.

We now work towards an alternative definition of a meromorphic

function which is framed in terms of local information and requires no

explicit information about the pole set.

Suppose that {Ui: i E I} is an open cover of n and that for each

i E I we are given fi,gi E A(Ui ) with gi not vanishing identically on

any connected component of Ui. Then {(fi,gi): i E I} defines a mero

morphic function m on n provided that for all i,j E I we have

at all points of Ui n Uj where both gi and gj are non-zero. (Equivalently,

fig j fjg i on Ui n Uj ). We omit the routine construction of m. If
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7.

{v.: j E J} is another open cover of nand {(a.,b.): j E J} a
J J J

corresponding set of analytic functions satisfying the above conditions,

it is easily verified that {(fi,gi): i E I} and {(aj,bj ): j E J} define

the same meromorphic function if and only if

at all points of Ui n Vj where both gi and bj are non-zero.

We can now use this condition to define an equivalence relation

on all sets of pairs of analytic functions {(f.,g.): i E I} satisfying
1 1

the requisite compatibility conditions. The equivalence classes of this

relation are then defined to be meromorphic functions. This is

essentially the approach that we adopt in later chapters.

One immediate consequence of our local description of meromorphic

functions is that M(n) is a field (the connectedness of n is essential

here to avoid zero divisors).

Suppose m E M(n) and ~ E n. We define the order of m at ~,

ord(m,~), to be the smallest index with non-zero coefficient in the

Laurent expansion of m at ~.

m(z)

That is, if

on some neighbourhood of ~ and aN ; 0, then ord(m,~) = N. Clearly, if

m = fIg in some neighbourhood of ~, ord(m,~) = ord(f,~) -ord(g,~) though

of course the terms on the right hand side depend on the choice of local

representation for m!

If ord(m,~) > 0, we say that m has a zero of order ord(m,~) at ~

and if ord(m,~) < 0, we say that m has a pole of order -ord(m,~) at ~.

We set

Z(m)

P(m)

{z E n: ord(m,z) > O}

{z E n: ord(m,z) < O}

{z E n: m(z) = O}

{z E n: m has a pole at z} .

Z(m) and P(m) are called the zero and pole set of m respectively.

Clearly Z(m) and P(m) are disjoint discrete subsets of n (assuming m, 0).
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8.

We now introduce some useful definitions and notation. Suppose

p: n + ~ and {z E n: p(z) + o} is a discrete subset of n. We call the

formal sum I p(z).z a divisor on n. We denote the set of divisors on
ZEn

n by V(n). V(n) has the structure of an ordered abelian group if we

define

( L p(z).z ± L q(Z).z)
ZEn ZEn

L (p±q)(z).z
ZEn

L p(z).z>
ZEn

L q(z).z
ZEn

if and only if

p(Z) ~ q(z) for all ZEn with strict inequality for at least one point

of n.

Let M*(n) denote the group of invertible elements of M(n).
Since n is assumed connected, M*(n) is all of M(n) except the zero

function. Given m E M*(n), the divisor of m, div(m), is defined to be

I ord(m,z).z
ZEn

div: M*(n) + V(n) is a homomorphism (relative to the multiplicative

structure on M*(n)). We note that div(m) ~ 0 if and only if m E A(n).

Suppose m E M(n) and ~ E n. Let m have Laurent series

I
j=N

at ~, where we suppose aN + O.

to be

a.(z-~)j
J

The principal part of m at ~ is defined

if N ~ --I and zero otherwise. We note that m,m' E M(n) have the same

principal part at ~ if and only if m-m' is analytic on some neighbourhood

of ~.

To conclude this section we remark that Proposition 1.1.6

generalises to meromorphic functions and therefore we can discuss

meromorphic continuation. We leave details to the reader.
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9.

Exercises

1. Verify that

div(mm')

-1
div(m )

div(m)

function on Q.

div(m) + div(m'), m,m' E M*(Q).

-div(m), m E M*(Q).

o if and only if m is a nowhere vanishing analytic

2.

3.

§3.

Let m E M*(~). Show that if div(m) = 0 then either m is constant

or m has an essential singularity at infinity.

Under what conditions is the composition of two meromorphic

functions metomorphic?

Theorems of Weierstrass and Mittag-Leffler

In the preceding sections we have reviewed some of the basic

elementary properties of analytic and meromorphic functions. However,

we have as yet given no means of constructing such functions so as to

satisfy specified properties. For example, if X is any closed subset of

a it is not difficult to construct a COO function on ~ with zero set X.

Can we find an analytic function whose zero set is equal to X? Clearly

we cannot unless X is a discrete subset of~. It turns out though that

if X is discrete we can always find an analytic function on ~ with zero

set X. This is exactly the type of result we need if our study of

analytic functions is to amount to much more than a study of polynomials,

rational functions and the standard analytic functions such as log and

expo

Our aim in this section will be to show the importance of the

theory of the partial differential operator a/az and the topology of

domains in a in questions involving the construction of analytic and

meromorphic functions with specified behaviour at prescribed poles and

zeros. We adopt this approach because it generalises well to functions

of several complex variables and complex manifolds. We must emphasise,

however, that the Mittag-Leffler and Weierstrass theorems can be given
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10.

rather more elementary proofs than those presented here which do not

depend on the theory of a/az (see, for example, Heins [lJ or Hille [lJ),

Throughout this section n will denote an open subset of ~.

We give the proof of the following basic existence theorem in

the appendix to this chapter.

Theorem 1.3.1.
sl,lch that

Let f € C~(n). Then there exists u € Coo(n)

du/az f.

Remark.
sequence

An equivalent formulation of Theorem 1.3.1 is that the

is exact for every open subset n of ~ (i denotes inclusion).

The Mittag-Leffler theorem gives conditions under which there

e~ists a meromorphic function on Q with specified principal parts.

Before stating the Mittag-Leffler theorem we introduce some

useful notation. Suppose Ui , Uj are sets, then we let Uij denote the

intersection Ui n Uj . We use the obvious generalisation of this notation

for intersections of more than two indexed sets.

Theorem 1.3.2. (Mittag-Leffler theorem) Let {Ui :i € I} be an

open cover of n and suppose we are given mi € M(U
i

) for each i € I.

Then, provided that m. - m. € A(U .. ) for all i,j € I, there exists
1 J 1J

m € M(n) such that

Remark. An alternative formulation of this theorem would be:

Suppose X is a discrete subset of n and that for each z € X we are given

a meromorphic function mZ which is defined on some neighbourhood of Z

and has a single pole at z. Then there exists m € M(n) with pole set X

and such that the principal part of m at z equals the principal part of

mZ at z for all z € x.
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