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The supremum of first eigenvalues of

conformally covariant operators

in a conformal class

bernd ammann and pierre jammes

Abstract

Let (M,g) be a compact Riemannian manifold of dimension ≥ 3. We show that

there is a metric g̃ conformal to g and of volume 1 such that the first positive

eigenvalue of the conformal Laplacian with respect to g̃ is arbitrarily large.

A similar statement is proven for the first positive eigenvalue of the Dirac

operator on a spin manifold of dimension ≥ 2.

1.1 Introduction

The goal of this article is to prove the following theorems.

Theorem 1.1.1 Let (M,g0, χ ) be compact Riemannian spin manifold of

dimension n ≥ 2. For any metric g in the conformal class [g0], we denote

the first positive eigenvalue of the Dirac operator on (M,g, χ ) by λ+
1 (Dg).

Then

sup
g∈[g0]

λ+
1 (Dg)Vol(M,g)1/n = ∞.

Theorem 1.1.2 Let (M,g0, χ ) be compact Riemannian manifold of dimension

n ≥ 3. For any metric g in the conformal class [g0], we denote the first positive

eigenvalue of the conformal Laplacian Lg := �g + n−2
4(n−1)

Scalg (also called

Yamabe operator) on (M,g, χ ) by λ+
1 (Lg). Then

sup
g∈[g0]

λ+
1 (Lg)Vol(M,g)2/n = ∞.

The Dirac operator and the conformal Laplacian belong to a large fam-

ily of operators, defined in details in subsection 1.2.3. These operators are
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called conformally covariant elliptic operators of order k and of bidegree

((n − k)/2, (n + k)/2), acting on manifolds (M,g) of dimension n > k. In

our definition we also claim formal self-adjointness.

All such conformally covariant elliptic operators of order k and of bidegree

((n − k)/2, (n + k)/2) share several analytical properties, in particular they are

associated to the non-compact embedding H k/2 → L2n/(n−k). Often they have

interpretations in conformal geometry. To give an example, we define for a

compact Riemannian manifold (M,g0)

Y (M, [g0]) := inf
g∈[g0]

λ1(Lg)Vol(M,g)2/n,

where λ1(Lg) is the lowest eigenvalue of Lg . If Y (M, [g0]) > 0, then the

solution of the Yamabe problem [29] tells us that the infimum is attained and

the minimizer is a metric of constant scalar curvature. This famous problem

was finally solved by Schoen and Yau using the positive mass theorem.

In a similar way, for n = 2 the Dirac operator is associated to constant-mean-

curvature conformal immersions of the universal covering into R
3. If a Dirac-

operator-analogue of the positive mass theorem holds for a given manifold

(M,g0), then the infimum

inf
g∈[g0]

λ+
1 (Dg)Vol(M,g)1/n

is attained [3]. However, it is still unclear whether such a Dirac-operator-

analogue of the positive mass theorem holds in general.

The Yamabe problem and its Dirac operator analogue, as well as the

analogues for other conformally covariant operators are typically solved by

minimizing an associated variational problem. As the Sobolev embedding

H k/2 → L2n/(n−k) is non-compact, the direct method of the calculus of variation

fails, but perturbation techniques and conformal blow-up techniques typically

work. Hence all these operators share many properties.

However, only few statements can be proven simultaneously for all confor-

mally covariant elliptic operators of order k and of bidegree ((n − k)/2, (n +

k)/2). Some of the operators are bounded from below (e.g. the Yamabe and

the Paneitz operator), whereas others are not (e.g. the Dirac operator). Some

of them admit a maximum principle, others do not. Some of them act on func-

tions, others on sections of vector bundles. The associated Sobolev space H k/2

has non-integer order if k is odd, hence it is not the natural domain of a dif-

ferential operator. For Dirac operators, the spin structure has to be considered

in order to derive a statement as Theorem 1.1.1 for n = 2. Because of these

differences, most analytical properties have to be proven for each operator

separately.
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The supremum of first eigenvalues 3

We consider it hence as remarkable that the proof of our Theorems 1.1.1

and 1.1.2 can be extended to all such operators. Our proof only uses some few

properties of the operators, defined axiomatically in 1.2.3. More exactly we

prove the following.

Theorem 1.1.3 Let Pg be a conformally covariant elliptic operator of order

k, of bidegree ((n − k)/2, (n + k)/2) acting on manifolds of dimension n > k.

We also assume that Pg is invertible on S
n−1 × R (see Definition 1.2.4). Let

(M,g0) be compact Riemannian manifold. In the case that Pg depends on

the spin structure, we assume that M is oriented and is equipped with a spin

structure. For any metric g in the conformal class [g0], we denote the first

positive eigenvalue of Pg by λ+
1 (Pg). Then

sup
g∈[g0]

λ+
1 (Pg)Vol(M,g)k/n = ∞.

The interest in this result is motivated by three questions. At first, as already

mentioned above the infimum

inf
g∈[g0]

λ+
1 (Dg)Vol(M,g)1/n

reflects a rich geometrical structure [3], [4], [5], [7], [8], similarly for the

conformal Laplacian. It seems natural to study the supremum as well.

The second motivation comes from comparing Theorem 1.1.3 to results

about some other differential operators. For the Hodge Laplacian �
g
p acting

on p-forms, we have supg∈[g0] λ1(�
g
p)Vol(M,g)2/n = +∞ for n ≥ 4 and 2 ≤

p ≤ n − 2 ([19]). On the other hand, for the Laplacian �g acting on functions,

we have

sup
g∈[g0]

λk(�g)Vol(M,g)2/n < +∞

(the case k = 1 is proven in [20] and the general case in [27]). See [25] for a

synthetic presentation of this subject.

The essential idea in our proof is to construct metrics with longer and longer

cylindrical parts. We will call this an asymptotically cylindrical blowup. Such

metrics are also called Pinocchio metrics in [2, 6]. In [2, 6] the behavior of Dirac

eigenvalues on such metrics has already been studied partially, but the present

article has much stronger results. To extend these existing results provides the

third motivation.
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1.2 Preliminaries

1.2.1 Notations

In this article By(r) denotes the ball of radius r around y, Sy(r) = ∂By(r)

its boundary. The standard sphere S0(1) ⊂ R
n in R

n is denoted by S
n−1, its

volume is ωn−1. For the volume element of (M,g) we use the notation dvg . In

our article, Ŵ(V ) (resp. Ŵc(V )) always denotes the set of all smooth sections

(resp. all compactly supported smooth sections) of the vector bundle V → M .

For sections u of V → M over a Riemannian manifold (M,g) the Sobolev

norms L2 and H s , s ∈ N, are defined as

‖u‖2
L2(M,g) :=

∫

M

|u|2 dvg

‖u‖2
H s (M,g) := ‖u‖2

L2(M,g) + ‖∇u‖2
L2(M,g) + · · · + ‖∇su‖2

L2(M,g).

The vector bundle V will be suppressed in the notation. If M and g

are clear from the context, we write just L2 and H s . The completion of

{u ∈ Ŵ(V ) | ‖u‖H s (M,g) < ∞} with respect to the H s(M,g)-norm is denoted

by ŴH s (M,g)(V ), or if (M,g) or V is clear from the context, we alternatively

write ŴH s (V ) or H s(M,g) for ŴH s (M,g)(V ). The same definitions are used for

L2 instead of H s . And similarly ŴCk(M,g)(V ) = ŴCk (V ) = Ck(M,g) is the set

of all Ck-sections, k ∈ N ∪ {∞}.

1.2.2 Removal of singularities

In the proof we will use the following removal of singularities lemma.

Lemma 1.2.1 (Removal of singularities lemma) Let � be a bounded open

subset of R
n containing 0. Let P be an elliptic differential operator of order k

on �, f ∈ C∞(�), and let u ∈ C∞(� \ {0}) be a solution of

Pu = f (1.1)

on � \ {0} with

lim
ε→0

∫

B0(2ε)−B0(ε)

|u|r−k = 0 and lim
ε→0

∫

B0(ε)

|u| = 0 (1.2)
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where r is the distance to 0. Then u is a (strong) solution of (1.1) on �. The

same result holds for sections of vector bundles over relatively compact open

subset of Riemannian manifolds.

Proof We show that u is a weak solution of (1.1) in the distributional sense, and

then it follows from standard regularity theory, that it is also a strong solution.

This means that we have to show that for any given compactly supported smooth

test function ψ : � → R we have

∫

�

uP ∗ψ =

∫

�

f ψ.

Let η : � → [0, 1] be a test function that is identically 1 on B0(ε), has

support in B0(2ε), and with |∇mη| ≤ Cm/εm. It follows that

sup |P ∗(ηψ)| ≤ C(P,�,ψ)ε−k,

on B0(2ε) \ B0(ε) and sup |P ∗(ηψ)| ≤ C(P,�,ψ) on B0(ε) and hence

∣
∣
∣
∣

∫

�

uP ∗(ηψ)

∣
∣
∣
∣
≤ Cε−k

∫

B0(2ε)\B0(ε)

|u| + C

∫

B0(ε)

|u|

≤ C

∫

B0(2ε)\B0(ε)

|u|r−k + C

∫

B0(ε)

|u| → 0.

(1.3)

We conclude
∫

�

uP ∗ψ =

∫

�

uP ∗(ηψ) +

∫

�

uP ∗((1 − η)ψ)

=

∫

�

uP ∗(ηψ)

︸ ︷︷ ︸

→0

+

∫

�

(Pu)(1 − η)ψ

︸ ︷︷ ︸

→
∫

�
f ψ

(1.4)

for ε → 0. Hence the lemma follows. �

Condition (1.2) is obviously satisfied if
∫

�
|u|r−k < ∞. It is also satisfied if

∫

�

|u|2r−k < ∞ and k ≤ n, (1.5)

as in this case

(∫

B0(2ε)\B0(ε)

|u|r−k

)2

≤

∫

�

|u|2r−k

∫

B0(2ε)\B0(ε)

r−k

︸ ︷︷ ︸

≤C

.
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1.2.3 Conformally covariant elliptic operators

In this subsection we present a class of certain conformally covariant elliptic

operators. Many important geometric operators are in this class, in particular

the conformal Laplacian, the Paneitz operator, the Dirac operator, see also

[18, 21, 22] for more examples. Readers who are only interested in the Dirac

operator, the Conformal Laplacian or the Paneitz operator, can skip this part

and continue with section 1.3.

Such a conformally covariant operator is not just one single differential oper-

ator, but a procedure how to associate to an n-dimensional Riemannian manifold

(M,g) (potentially with some additional structure) a differential operator Pg

of order k acting on a vector bundle. The important fact is that if g2 = f 2g1,

then one claims

Pg2
= f − n+k

2 Pg1
f

n−k
2 . (1.6)

One also expresses this by saying that P has bidegree ((n − k)/2, (n + k)/2).

The sense of this equation is apparent if Pg is an operator from C∞(M)

to C∞(M). If Pg acts on a vector bundle or if some additional structure (as

e.g. spin structure) is used for defining it, then a rigorous and careful defini-

tion needs more attention. The language of categories provides a good formal

framework [30]. The concept of conformally covariant elliptic operators is

already used by many authors, but we do not know of a reference where a

formal definition is carried out that fits to our context. (See [26] for a similar

categorial approach that includes some of the operators presented here.) Often

an intuitive definition is used. The intuitive definition is obviously sufficient if

one deals with operators acting on functions, such as the conformal Laplacian

or the Paneitz operator. However to properly state Theorem 1.1.3 we need the

following definition.

Let Riemn (resp. Riemspinn) be the category n-dimensional Riemannian

manifolds (resp. n-dimensional Riemannian manifolds with orientation and

spin structure). Morphisms from (M1, g1) to (M2, g2) are conformal embed-

dings (M1, g1) →֒ (M2, g2) (resp. conformal embeddings preserving orienta-

tion and spin structure).

Let Laplacen
k (resp. Diracn

k ) be the category whose objects are

{(M,g), Vg, Pg}

where (M,g) in an object of Riemn (resp. Riemspinn), where Vg is a vector

bundle with a scalar product on the fibers, where Pg : Ŵ(Vg) → Ŵ(Vg) is an

elliptic formally self-adjoint differential operator of order k.
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A morphism (ι, κ) from {(M1, g1), Vg1
, Pg1

} to {(M2, g2), Vg2
, Pg2

} consists

of a conformal embedding ι : (M1, g1) →֒ (M2, g2) (preserving orientation

and spin structure in the case of Diracn
k ) together with a fiber isomorphism

κ : ι∗Vg2
→ Vg1

preserving fiberwise length, such that Pg1
and Pg2

sat-

isfy the conformal covariance property (1.6). For stating this property pre-

cisely, let f > 0 be defined by ι∗g2 = f 2g1, and let κ∗ : Ŵ(Vg2
) → Ŵ(Vg1

),

κ∗(ϕ) = κ ◦ ϕ ◦ ι. Then the conformal covariance property is

κ∗Pg2
= f − n+k

2 Pg1
f

n−k
2 κ∗. (1.7)

In the following the maps κ and ι will often be evident from the context

and then will be omitted. The transformation formula (1.7) then simplifies

to (1.6).

Definition 1.2.2 A conformally covariant elliptic operator of order k and of

bidegree ((n − k)/2, (n + k)/2) is a contravariant functor from Riemn (resp.

Riemspinn) to Laplacen
k (resp. Diracn

k ), mapping (M,g) to (M,g, Vg, Pg) in

such a way that the coefficients are continuous in the Ck-topology of metrics

(see below). To shorten notation, we just write Pg or P for this functor.

It remains to explain the Ck-continuity of the coefficients.

For Riemannian metrics g, g1, g2 defined on a compact set K ⊂ M we set

d
g

Ck (K)
(g1, g2) := max

t=0,...,k
‖(∇g)t (g1 − g2)‖C0(K).

For a fixed background metric g, the relation d
g

Ck (K)
( · , · ) defines a distance

function on the space of metrics on K . The topology induced by dg is inde-

pendent of this background metric and it is called the Ck-topology of metrics

on K .

Definition 1.2.3 We say that the coefficients of P are continuous in the Ck-

topology of metrics if for any metric g on a manifold M , and for any compact

subset K ⊂ M there is a neighborhood U of g|K in the Ck-topology of met-

rics on K , such that for all metrics g̃, g̃|K ∈ U , there is an isomorphism of

vector bundles κ̂ : Vg|K → Vg̃|K over the identity of K with induced map

κ̂∗ : Ŵ(Vg|K ) → Ŵ(Vg̃|K ) with the property that the coefficients of the differ-

ential operator

Pg − (κ̂∗)−1Pg̃ κ̂∗

depend continuously on g̃ (with respect to the Ck-topology of metrics).
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1.2.4 Invertibility on S
n−1 × R

Let P be a conformally covariant elliptic operator of order k and of bide-

gree ((n − k)/2, (n + k)/2). For (M,g) = S
n−1 × R, the operator Pg is a

self-adjoint operator H k ⊂ L2 → L2 (see Lemma 1.3.1 and the comments

thereafter).

Definition 1.2.4 We say that P is invertible on S
n−1 × R if Pg is an invertible

operator H k → L2 where g is the standard product metric on S
n−1 × R. In

order words there is a constant σ > 0 such that the spectrum of Pg : ŴH k (Vg) →

ŴL2 (Vg) is contained in (−∞,−σ ] ∪ [σ,∞) for any g ∈ U . In the following,

the largest such σ will be called σP .

We conjecture that any conformally covariant elliptic operator of order k

and of bidegree ((n − k)/2, (n + k)/2) with k < n is invertible on S
n−1 × R.

1.2.5 Examples

Example 1: The Conformal Laplacian

Let

Lg := �g +
n − 2

4(n − 1)
Scalg,

be the conformal Laplacian. It acts on functions on a Riemannian manifold

(M,g), i.e. Vg is the trivial real line bundle R. Let ι : (M1, g1) →֒ (M2, g2)

be a conformal embedding. Then we can choose κ := Id : ι∗Vg2
→ Vg1

and

formula (1.7) holds for k = 2 (see e.g. [15, Section 1.J]). All coefficients of

Lg depend continuously on g in the C2-topology. Hence L is a conformally

covariant elliptic operator of order 2 and of bidegree ((n − 2)/2, (n + 2)/2).

The scalar curvature of S
n−1 × R is (n − 1)(n − 2). The spectrum of Lg on

S
n−1 × R of Lg coincides with the essential spectrum of Lg and is [σL,∞) with

σL := (n − 2)2/4. Hence L is invertible on Sn−1 × R if (and only if) n > 2.

Example 2: The Paneitz operator

Let (M,g) be a smooth, compact Riemannian manifold of dimension n ≥ 5.

The Paneitz operator Pg is given by

Pgu = (�g)2u − divg(Ag du) +
n − 4

2
Qgu

where

Ag :=
(n − 2)2 + 4

2(n − 1)(n − 2)
Scalgg −

4

n − 2
Ricg,

Qg =
1

2(n − 1)
�gScalg +

n3 − 4n2 + 16n − 16

8(n − 1)2(n − 2)2
Scal2g −

2

(n − 2)2
|Ricg|

2.
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This operator was defined by Paneitz [32] in the case n = 4, and it was general-

ized by Branson in [17] to arbitrary dimensions ≥ 4. We also refer to Theorem

1.21 of the overview article [16]. The explicit formula presented above can

be found e.g. in [23]. The coefficients of Pg depend continuously on g in the

C4-topology

As in the previous example we can choose for κ the identity, and then the

Paneitz operator Pg is a conformally covariant elliptic operator of order 4 and

of bidegree ((n − 4)/2, (n + 4)/2).

On S
n−1 × R one calculates

Ag =
(n − 4)n

2
Id + 4πR > 0

where πR is the projection to vectors parallel to R.

Qg =
(n − 4)n2

8
.

We conclude

σP = Q =
(n − 4)n2

8

and P is invertible on S
n−1 × R if (and only if) n > 4.

Examples 3: The Dirac operator.

Let g̃ = f 2g. Let �gM resp. �g̃M be the spinor bundle of (M,g) resp.

(M, g̃). Then there is a fiberwise isomorphism β
g
g̃ : �gM → �g̃M , preserving

the norm such that

Dg̃ ◦ β
g
g̃ (ϕ) = f − n+1

2 β
g
g̃ ◦ Dg

(

f
n−1

2 ϕ
)

,

see [24, 14] for details. Furthermore, the cocycle conditions

β
g
g̃ ◦ β g̃

g = Id and β ĝ
g ◦ β

g̃

ĝ ◦ β
g
g̃ = Id

hold for conformal metrics g, g̃ and ĝ. We will hence use the map β
g
g̃ to identify

�gM with �g̃M . Hence we simply get

Dg̃ϕ = f − n+1
2 ◦ Dg

(

f
n−1

2 ϕ
)

. (1.8)

All coefficients of Dg depend continuously on g in the C1-topology. Hence

D is a conformally covariant elliptic operator of order 1 and of bidegree

((n − 1)/2, (n + 1)/2).

The Dirac operator on S
n−1 × R can be decomposed in a part Dvert deriving

along S
n−1 and a part Dhor deriving along R, Dg = Dvert + Dhor, see [1] or [2].
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Locally

Dvert =

n−1
∑

i=1

ei · ∇ei

for a local frame (e1, . . . , en−1) of S
n−1. Here · denotes the Clifford multi-

plication T M ⊗ �gM → �gM . Furthermore Dhor = ∂t · ∇∂t
, where t ∈ R is

the standard coordinate of R. The operators Dvert and Dhor anticommute. For

n ≥ 3, the spectrum of Dvert coincides with the spectrum of the Dirac operator

on S
n−1, we cite [12] and obtain

specDvert =

{

±

(
n − 1

2
+ k

)

| k ∈ N0

}

.

The operator (Dhor)
2 is the ordinary Laplacian on R and hence has spectrum

[0,∞). Together this implies that the spectrum of the Dirac operator on S
n−1 ×

R is the set (−∞,−σD] ∪ [σD,∞) with σD = n−1
2

.

In the case n = 2 these statements are only correct if the circle S
n−1 = S

1

carries the spin structure induced from the ball. Only this spin structure extends

to the conformal compactification that is given by adding one point at infinity

for each end. For this reason, we will understand in the whole article that all

circles S
1 should be equipped with this bounding spin structure. The exten-

sion of the spin structure is essential in order to have a spinor bundle on the

compactification. The methods used in our proof use this extension implicitly.

Hence D is invertible on Sn−1 × R if (and only if) n > 1.

Most techniques used in the literature on estimating eigenvalues of the

Dirac operators do not use the spin structure and hence these techniques cannot

provide a proof in the case n = 2.

Example 4: The Rarita-Schwinger operator and many other Fegan type

operators are conformally covariant elliptic operators of order 1 and of bide-

gree ((n − 1)/2, (n + 1)/2). See [21] and in the work of T. Branson for more

information.

Example 5: Assume that (M,g) is a Riemannian spin manifold that carries

a vector bundle W → M with metric and metric connection. Then there is a

natural first order operator Ŵ(�gM ⊗ W ) → Ŵ(�gM ⊗ W ), the Dirac opera-

tor twisted by W . This operator has similar properties as conformally covariant

elliptic operators of order 1 and of bidegree ((n − 1)/2, (n + 1)/2). The meth-

ods of our article can be easily adapted in order to show that Theorem 1.1.3

is also true for this twisted Dirac operator. However, twisted Dirac operators

are not “conformally covariant elliptic operators” in the above sense. They

could have been included in this class by replacing the category Riemspinn by
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