Plants and Microclimate A Quantitative Approach to Environmental Plant Physiology

Third Edition

This rigorous yet accessible text introduces the key physical and biochemical processes involved in plant interactions with the aerial environment. It is designed to make the more numerical aspects of the subject accessible to plant and environmental science students, and will also provide a valuable reference source to practitioners and researchers in the field.

The third edition of this widely recognised text has been completely revised and updated to take account of key developments in the field. Approximately half of the references are new to this edition, and relevant online resources are also incorporated for the first time. The text shows how recent developments in molecular and genetic research on plants can be used to advance our understanding of the biophysical interactions between plants and the atmosphere, and how progress in molecular biology can itself be informed by an understanding of whole-plant physiology. Remote sensing technologies and their applications in the study of plant function are also covered in greater detail.

Hamlyn G. Jones is Emeritus Professor of Plant Ecology at the University of Dundee and Adjunct Professor in Plant Biology at the University of Western Australia. His research uses experimental approaches and mathematical modelling to investigate the characters that enable plants to be adapted to specific environments and to tolerate environmental stress.

Plants and Microclimate

A Quantitative Approach to Environmental Plant Physiology

Third Edition

HAMLYN G. JONES

Professor Emeritus, Division of Plant Science University of Dundee at the James Hutton Institute Invergowrie, Dundee DD2 5DA, UK *and* Adjunct Professor of Plant Biology University of Western Australia

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521279598

Third edition © Hamlyn G. Jones 2014 First and second editions © Cambridge University Press 1983, 1992

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 1983 Second edition 1992 Third edition 2014 3rd printing 2015

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data Jones, Hamlyn G. Plants and microclimate : a quantitative approach to environmental plant physiology / Hamlyn G. Jones, professor emeritus, Division of Plant Science University of Dundee at the James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK. – Third edition.

pages cm Includes bibliographical references and index. ISBN 978-0-521-27959-8 (Paperback) 1. Vegetation and climate–Mathematical models. 2. Plant-atmosphere relationships–Mathematical models. 3. Plant ecophysiology–Mathematical models. I. Title. QK754.5.J66 2013 581.7′22-dc23-dc23 2012045663

ISBN 978-0-521-27959-8 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press 978-0-521-27959-8 - Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology: Third Edition Hamlyn G. Jones Frontmatter More information

CONTENTS

Preface	<i>page</i> vii
Acknowledgements	ix
Symbols	х
Main abbreviations and acronyms	xvi

1 A pl	quantitative approach to ant–environment interactions	1
1.1	Modelling	1
1.2	Use of experiments	6
2 Ra	diation	9
2.1	Introduction	9
2.2	Radiation laws	10
2.3	Radiation measurement	16
2.4	Radiation in natural environments	20
2.5	Radiation in plant communities	27
2.6	Radiation distribution within plant	
	canopies	31
2.7	Canopy reflectance and remote sensing	36
2.8	Direct and subcanopy methods for	
	determining canopy structure	42
2.9	Concluding comments	46
2.10	Sample problems	46
3 He	eat, mass and momentum transfer	47
3.1	Measures of concentration	47
3.2	Molecular transport processes	48
3.3	Convective and turbulent transfer	55
3.4	Transfer processes within and above	
	plant canopies	60
3.5	Sample problems	67
4 Pla	ant water relations	68
4.1	Physical and chemical properties of water	68
4.2	Cell water relations	72

4.3	Measurement of soil or plant water status	76
4.4	Hydraulic flow	81
4.5	Long-distance transport in the phloem	96
4.6	Sample problems	98

.

.

. .

5 En	ergy balance and evaporation	99
5.1	Energy balance	99
5.2	Evaporation	103
5.3	Measurement of evaporation rates	110
5.4	Evaporation from plant communities	116
5.5	Dew	119
5.6	Sample problems	121

6 Stomata1226.1 Distribution of stomata1226.2 Stomatal mechanics and mechanisms1256.3 Methods of study128

0.5	Michibus of Study	120
6.4	Stomatal response to environment	135
6.5	Stomatal resistance in relation to other	
	resistances	146
6.6	Stomatal function and the control loops	149
6.7	Sample problems	152

7 Photosynthesis and respiration

7.1	Photosynthesis	153
7.2	Respiration	162
7.3	Measurement and analysis of carbon	
	dioxide exchange	167
7.4	Photosynthetic models	171
7.5	Chlorophyll fluorescence	173
7.6	Control of photosynthesis and	
	photosynthetic 'limitations'	182
7.7	Carbon isotope discrimination	189
7.8	Response to environment	191
7.9	Photosynthetic efficiency and	
	productivity	197

153

Cambridge University Press 978-0-521-27959-8 - Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology: Third Edition Hamlyn G. Jones Frontmatter More information

vi Contents

7.10	Evolutionary and ecological aspects	205
7.11	Sample problems	206
8 Lig	ght and plant development	207
8.1	Introduction	207
8.2	Detection of the signal	209
8.3	Phytochrome control of development	211
8.4	Physiological responses	214
8.5	The role of plant growth regulators	223
8.6	Sample problem	223
9 Te	mperature	224
9.1	Physical basis of the control of tissue	
	temperature	224
9.2	Physiological effects of temperature	231
9.3	Effects of temperature on plant	
	development	236
9.4	Temperature extremes	242
9.5	Comments on some ecological aspects	
	of temperature adaptation	249
9.6	Sample problems	254
10 C	Prought and other abiotic stresses	255
10.1	Plant water deficits and physiological	
	processes	256
10.2	Drought tolerance	260
10.3	Further analysis of water use efficiency	270
10.4	Irrigation and irrigation scheduling	278
10.5	Other abiotic stresses	284
11 C	Other environmental factors: wind,	
a a	ititude, climate change and itmospheric pollutants	290
11.1	Wind	290
11.2	Altitude	297

11.3	Climate change and the 'greenhouse	204
	effect	304
11.4	Atmospheric pollutants	315
12 P	hysiology and crop vield	
in	nprovement	321
12.1	Variety improvement	324
12.2	Modelling and determination of	
	crop ideotype	332
12.3	Examples of applications	336
Appei	ndices	343
Apper	ndix 1 Units and conversion factors	344
Apper	ndix 2 Mutual diffusion coefficients fo	or
	binary mixtures containing air	or
	water at 20°C	345
Apper	ndix 3 Some temperature-dependent	
	properties of air and water	346
Apper	ndix 4 Temperature dependence of air	
	humidity and associated	
	quantities	347
Apper	ndix 5 Thermal properties and densition	es
••	of various materials and tissue	s
	at 20°C	349
Apper	ndix 6 Physical constants and other	
~ ~	quantities	350
Apper	ndix 7 Solar geometry and radiation	
~ ~	approximations	351
Apper	ndix 8 <i>Measurement of leaf boundary</i>	
~ ~	layer conductance	353
Apper	ndix 9 Derivation of Equation (9.9)	355
Apper	ndix 10 Answers to sample problems	356
Refere	ences	361
Index		396

PREFACE

I have been delighted, and somewhat surprised, at the continued widespread use of this text, in spite of the fact that much has changed in associated fields since the previous edition was published around 20 years ago. Perhaps the major change in plant biology over this period has been the explosion of research on the molecular and genetic basis of plant responses to the environment, though there have been important advances in other relevant fields such as in remote sensing. Although I have not attempted to cover molecular aspects in any detail, as there are many suitable alternative texts, I have tried to relate recent advances in molecular sciences to our understanding of whole-plant responses to the environment. In this context I have aimed especially to indicate the ways in which the powerful new molecular tools and other 'omics' technologies can contribute to advancing our understanding of the biophysical interactions between plants and the atmosphere. As in the previous editions, however, I have continued the approach of describing only briefly the biochemical and molecular mechanisms involved in plant responses to the environment, so interested readers are referred to specialist reviews and books mentioned at appropriate places in the text.

For this third edition I have chosen largely to retain the general structure and aims of the successful previous editions. In particular the key aim remains to provide an authoritative introduction to environmental plant physiology suitable both as a text for upper undergraduate and postgraduate courses and as a reference for researchers in the field. As previously, the first half of the text concentrates on the general principles, with the later chapters going more into the physiology and practical applications. The emphasis throughout remains on the more quantitative and physical aspects of plant responses to the aerial environment as these topics tend to be relatively poorly treated by the standard plant physiology texts, yet our need to understand how the whole plant functions and responds to its environment has never been greater if we are to respond effectively to the challenges that face the world in the coming years. These include responding to the problems and opportunities raised by climate change and by the need to continue to feed the burgeoning and increasingly wealthy world population in the coming years.

As it is now 20 years since the previous edition was published it has proved necessary to completely revisit and revise the content throughout. Around half the publications referred to are new; nevertheless many of the references to earlier papers have been retained, especially for data. Even though many thousands of potentially relevant new papers and texts have appeared, often these only provide refinements rather than substantial improvements (for example I still quote the data using 1% O_2 to suppress photorespiration even though more recent papers use 2%). The citations included fall into one of several categories: general texts and reviews that give access

viii Preface

to useful references and a limited number of key original references, while the majority of citations are simply useful examples selected from among many possible papers. I have also, where appropriate, included a limited number of key internet addresses, though it should be recognised that these change rapidly.

In revising the text I am indebted to many colleagues from around the world who have provided helpful and constructive comments on the previous editions, and to those who have read and commented on sections of the text. Particular thanks go to Abdellah Barakate, David Deery, Olga Grant, Anthony Hall, Amanda Jones, Ian MacKay, Barry Osmond, John Raven, Philip Smith and Bill Thomas.

ACKNOWLEDGEMENTS

I am very grateful to Dr M. L. Parker for permission to reproduce photographs in Figures 6.2 and 7.1 and to Dr B. M. Joshi for permission to use the electron micrographs in Figure 6.2. I am also grateful to the appropriate authors and to the following for permission to use previously published material: Carnegie Institution of Washington (Figures 7.18 and 9.19); British Ecological Society (Figure 7.21); The Royal Society (Figure 7.24); The Director, National Institute for Agricultural Botany, Cambridge (Figure 12.2(*a*)). I am also grateful to Michael Rosenthal for Figure 4.7(*c*) and for part of Figure 4.8; Manfred Stoll for the concept of Figure 10.14; Drs Bob Furbank, David Deery, Jose Jimenez-Berni and Xavier Sirault for the image data in Figure 12.3; Professor Ch. Körner for permission to use data in Figure 11.9; M. Rosenthal for part of Figure 4.8; Ian MacKay for part of Figure 12.2(*b*); and to Oxford University Press for permission to use Figures 2.1, 2.13, 2.31 and 7.1.

SYMBOLS

Where possible I have tried to use the most commonly accepted symbols for different quantities, though in some areas such as the treatment of radiation there appears to be no universal consensus. Where possible the use of the same symbol for different quantities has been minimised, though where duplication is unavoidable there should usually be little chance of confusion. Note that different fonts are used to distinguish quantities, for example molar and mass units for gas transfer. The individual superscripts and subscripts given for each main symbol may be combined to make compound symbols.

а	amplitude of oscillation (a', modified amplitude)
a, A	constants
a_{W}	activity
	<i>subscript: a</i> _W water
А	amp (coulomb s^{-1})
Α	area (m ²)
Α	absorbance (= $\ln [\mathbf{I}_o/\mathbf{I}]$)
b, B	constants
b_{i}	control parameters (sensitivity analysis)
с	concentration (kg m^{-3} or mol m^{-3})
	<i>subscripts:</i> c_C carbon dioxide; c_H heat (J m ⁻³ =
	$\rho c_p T$); c_M momentum (kg m ⁻² s ⁻¹ = ρu);
	c_0 oxygen; c_W water; c_X concentration
	of pollutant X; c_a in the outside air; c_c at
	carboxylase; c_e in inlet air; c_i in intercellular
	spaces at surface of cell walls; c_x effective
	concentration internal to biochemistry (for
	CO ₂); c_{ℓ} leaf; c_{o} in outlet air; c_{Pr} phytochrome
	concentration; c _s solute
	<i>superscripts:</i> c^m molar concentration; c'
	carbon dioxide (= $c_{\rm C}$)
c_D	total drag coefficient
c _f	form drag coefficient
-	

 c_p specific heat of air (c_p^* specific heat capacity of leaf tissue) (J kg⁻¹ K⁻¹)

С	speed of light (2.998 m s ^{-1})
С	capacitance (m MPa ⁻¹ or m ³ MPa ⁻¹)
C _r	relative capacitance (MPa ⁻¹)
С	sensible heat exchange (W m^{-2})
	<i>subscripts:</i> $C_{(d)}$ dry; $C_{(w)}$ wet
С	control or sensitivity coefficients
d	days
d	zero plane displacement (m)
d	diameter (m) (e.g. $d_{ m p}$ particle diameter)
d	characteristic dimension (m)
D	drainage (mm)
D	atmospheric vapour pressure deficit (kPa)
	modifiers: D* integrated average daily vapour
	pressure deficit; D_{ℓ} leaf to air vapour pressure
	deficit; D_{c_W} absolute humidity deficit of air;
	$D_{x_{W}}$ water vapour mole fraction deficit of air
D	thermal time, growing degree days or
	temperature sum (°C day)
	subscript: D _{eff} effective day-degrees
D	diffusion coefficient (m ² s ⁻¹)
	<i>subscripts:</i> D_A air; D_C CO ₂ , D_{CA} mutual
	diffusion coefficient for CO_2 in air; D_{H} heat; D_{i}
	the <i>i</i> th species; $D_{\rm M}$ momentum; D_0 oxygen;
	$m{D}_{ m W}$ water; $m{D}_{ m X}$ pollutant X
	<i>superscript:</i> D° reference value
D	dielectric constant (dimensionless)
e	base for natural logarithm (2.71828)
е	water vapour pressure (Pa) (see also D)
	<i>subscripts:</i> e_a in bulk air; e_e in inlet; e_o in
	outlet; e_s surface; e_s saturation; $e_{s(T\ell)}$ saturation
	water vapour pressure at leaf temperature
	$(= e_{\ell}); e_{ice}$ vapour pressure over pure ice
е	equation of time (min)
Ε	radiant energy (e.g. of a photon)
	<i>subscript:</i> E_{λ} radiant energy per unit wavelength
$E_{\rm a}$	activation energy
Е	evaporation (or transpiration) rate
	$(\text{kg m}^{-2} \text{ s}^{-1}, \text{ mol m}^{-2} \text{ s}^{-1} \text{ or mm h}^{-1})$

			Symbols
	<i>modifiers:</i> \mathbf{E}_{ℓ} transpiration; \mathbf{E}^{m} evaporation or transpiration (molar units): \mathbf{E}_{o} potential	g	molar conductance (= g^{m}) (mol m ⁻² s ⁻¹) modifiers: as for conductance (g)
	evaporation from free water surface; \mathbf{E}_{eq} equilibrium evaporation; \mathbf{E}_{imp} imposed	g	acceleration due to gravity (m $s^{-2} = 9.8$ at sea level)
	evaporation	G	Gibbs free energy (J)
Г	evapotranspiration	G	soil heat storage (W m^{-2})
	subscripts: ET_{0} reference evapotranspiration	h	hour
	from short grass surface well supplied with	h	Planck's constant (6.626 \times 10 ⁻³⁴ J s)
	water: \mathbf{ET}_{c} expected value of \mathbf{ET} for a specific	h	relative humidity (dimensionless)
	crop and growth stage: ET and actual	h	hour angle of the sun (the angular distance
	evanotranspiration for any crop		from the meridian of the observer: degree or
	Pfr/Pr ratio		radian)
	fraction (e.g. fraction of Ω_2 unconsumed	h	height or thickness (m)
	fraction carbon allocated to leaves as	HSAI	hemi-surface area index (dimensionless)
	compared with roots $f_{\rm per}$ the fraction of	I	moment of inertia (kg m^{-2})
	absorbed PAR that is received by PSII f	I	electric current (A)
	fraction of reaction centres that are open)	T	thermal indices
	fractional vegetation cover	1	subscripts: Laura index analogous to CWSI:
g	enhancement factor		L conductance index
	fraction of water in unfrozen state	т	i_g conductance muck
	(dimensionless)	1	subscripte: I shortwaye: I diffuse
	(uniclusion cos) fluorescence (arbitrary or mol $m^{-2} s^{-1}$)		shortwaye: L direct shortwaye: L.
	modifiers: E' fluorescence at any time $(-E)$:		$Shortwave, \mathbf{I}_{S(dir)}$ uncer shortwave, \mathbf{I}_{L}
	<i>E</i> maximum value after equilibration in		radiation: L light componention point: L
	$\Gamma_{\rm m}$ maximum value after equilibration in dark: E' fluorescence at any time obtained		nation, \mathbf{I}_{c} light compensation point, \mathbf{I}_{p}
	uark; $F_{\rm m}$ hubrescence at any time obtained		photon irradiance; \mathbf{I}_{e} irradiance in terms of
	with saturating hash; F_0 basal hubble scence		energy; I _A solar irradiance at top of
	with open reaction centres; F_0 basal		atmosphere; \mathbf{I}_{pA} solar constant; \mathbf{I}_{o} reference
	nuorescence at any time; F_v variable	т	value $(1, 1, 2, -2)$
	$F_{\rm rescale}({\rm N})$	J	joule (1 kg m s)
	force (N)	J_{\max}	maximum electron transport rate (ETR)
	conductance (m s ⁻)	J	flux density or mass transfer rate per unit area $(1, 1, -2, -1)$
	subscripts: g_A canopy boundary layer		$(kg m - s^{-1})$
	conductance; $g_{\rm L}$ canopy physiological		subscripts: \mathbf{J}_{v} volume flux density (m s ⁻¹); for
	conductance; $g_{\rm C}$ carbon dioxide; $g_{\rm H}$ heat; $g_{\rm M}$		other modifiers see D
	momentum; g_0 oxygen; g_R radiation	k	thermal conductivity (W m ⁻¹ K ⁻¹)
	$(= 4\varepsilon\sigma I_a/\rho c_p); g_{\rm HR}$ parallel heat and	K	rate constant or other constant
	radiative transfer; g_W water; g_a boundary		subscripts: $k_{\rm F}$, $k_{\rm H}$, $k_{\rm T}$ and $k_{\rm P}$, respectively,
	layer; g_c cuticle; g_g gas phase; g_ℓ leaf; g_i		are the rate constants for de-excitation
	intercellular space; $g_{\rm m}$ diffusive component in		through fluorescence, thermal dissipation
	mesophyll; g_0 reference value; g_s stomatal; g_w		as heat, energy transfer to photosystem I,
	wall; g_x internal biochemical conductance		and PSII photochemistry with all reaction
	<i>superscripts:</i> g^{m} molar conductance (= g);		centres open; k_d rate of development (= $1/t$)
	g' carbon dioxide (= $g_{\rm C}$)	k	Boltzmann's constant

k	extinction coefficient (dimensionless)	Μ	metabolic heat storage (W m^{-2})
k	von Karman's constant (= 0.41,	mol	mole (amount of substance containing
	dimensionless)		Avogadro's number of particles)
kg	kilogram	n	hours bright sunshine; number
Κ	kelvin temperature	n	number of moles
K _c	crop coefficient (for evaporation from a well		<i>subscripts:</i> n_p photons; n_s solute; other
	watered crop)		subscripts as for D
	<i>modifiers:</i> K_{c-adj} adjusted crop coefficient	n(E)	number of moles with energy exceeding E
	allowing for drought effects; K_{cb} basal		(mol)
	coefficient for crop; K_{stress} stress modifier; K_{s}	Ν	Newton
	soil coefficient	Ν	daylength (h)
K	hydraulic conductance (m MPa ^{-1} s ^{-1} or m ^{3}	Ν	reflectance in the near infrared (= $ ho_{ m NIR}$)
	$MPa^{-1} s^{-1}$; see also L_p)	0	run-off (mm)
	<i>modifiers</i> : K_r root; K_{st} stem; K_{ℓ} leaf	p	partial pressure (Pa)
K	transfer coefficient (m ^{2} s ^{-1})		<i>modifiers:</i> as for D and for concentration (c)
	subscripts: as for D	Р	precipitation (mm)
K_n	Michaelis constant (dimensions as for	Р	pressure (Pa)
	concentration or irradiance)		<i>modifiers: P</i> ^o reference; <i>P</i> * balance pressure
	<i>modifiers:</i> $K_m^{\mathbb{C}}$ for carbon dioxide; $K_m^{\mathbb{I}}$ for	Р	period of oscillation (s)
	light	Pe	power output (W m ⁻²)
l	length, thickness (m)	Р	photosynthesis (mg m ⁻² s ⁻¹ or μ mol m ⁻² s ⁻¹)
	<i>superscript: l</i> * thickness of leaf tissue		subscripts: \mathbf{P}_{c} rubisco-limited rate; \mathbf{P}_{g} gross
l	photosynthetic limitation (s m^{-1})		photosynthesis; \mathbf{P}_{j} RuBP-limited rate; \mathbf{P}_{n} net
	<i>modifiers:</i> superscripts as for resistance (<i>r</i>); ℓ'		photosynthesis; \mathbf{P}_{\max} maximum value with
	relative limitation (dimensionless)		either light of CO_2 saturating; \mathbf{P}_t triose
ln	natural logarithm		phosphate-limited rate
log	g logarithm to base 10		<i>superscripts:</i> \mathbf{P}^{m} molar; \mathbf{P}^{max} maximum with
L	hydraulic conductivity ($m^2 s^{-1} Pa^{-1}$)		light and CO_2 saturating; \mathbf{P}^{o} reference value
$L_{\rm p}$	hydraulic conductance (m s ⁻¹ Pa ⁻¹)	q	fluorescence quenching
L_{v}	volumetric hydraulic conductance (s ⁻¹ Pa ⁻¹)		<i>subscripts:</i> q_{I} photo-inhibition; q_{L} estimate of
L	radiance or intensity (W sr ⁻¹)		the fraction of open PSII reaction centres
	<i>subscripts:</i> L_{in} , L_{out} for radiance within or		using 'lake' model; q_N non-photochemical; q_N
	outside a Fraunhofer line		F_o quenching; q_P photochemical quenching;
L	leaf area index		$q_{\rm T}$ state transition
	<i>modifier:</i> L' leaf area index expressed per unit	qr	quantum requirement
	area of shaded ground (dimensionless)	Q_{10}	temperature coefficient: the ratio of the rate a
m	metre		one temperature to that at a temperature ten
т	mass fraction (dimensionless)	0	degrees lower (dimensionless)
	<i>modifiers:</i> as for concentration (c)	Q	radiant flux (J s^{-1} or W)
т	mass (kg)		<i>modifiers:</i> as for radiant flux density (\mathbf{R})
m -	air mass (dimensionless)	r	radius (m)
M	molecular mass	r	resistance (s m ⁻¹ or m ² s mol ⁻¹)
	subscripts: as for D		<i>modifiers:</i> as for conductance (g); also $r_*' =$
Μ	radiant exitance (W m ⁻²)		$dx'_w/d\mathbf{P}_n$ at normal ambient CO ₂

			Symbols (X
	molar resistance (= r^{m}) (m^{2} s mol ⁻¹)	T(t)	temperature as function of time	
	modifiers: as for conductance (g)	T	growing season length (days)	
2	liquid phase hydraulic resistance (MPa s m^{-1}	Т	torque or turning moment (N m or J)	
	or MPa s m^{-3})	T	transmission in discontinuous canopies	
D	subscripts: $R_{\rm f}$ leaf; $R_{\rm p}$ plant; $R_{\rm s}$ soil; $R_{\rm st}$ stem		(dimensionless)	
R	isotopic ratio (e.g. ${}^{18}\text{O}/{}^{16}\text{O}$)		<i>subscript:</i> T_{f} fraction that would reach the	
	<i>subscript:</i> R ₀ reference value		ground if all leaves non-transmitting	
7	electrical resistance (ohm = $W A^{-2}$)	и	molar air flow rate (mol s^{-1})	
R	reflectance in the red (= $\rho_{\rm R}$)	и	wind velocity (m s^{-1})	
R	respiration rate (mg m ^{-2} s ^{-1} or µmol m ^{-2} s ^{-1})		<i>subscripts:</i> u_z wind velocity at height z ;	
	subscripts: \mathbf{R}_{d} dark; \mathbf{R}_{ℓ} light; \mathbf{R}_{g} growth; \mathbf{R}_{m}		<i>u</i> [*] friction velocity	
	maintenance; \mathbf{R}_{non-ps} from non-	$v_{\rm s}$	sedimentation velocity (m s^{-1})	
	photosynthesising tissue	v	volume flow rate $(m^3 s^{-1})$	
R	radiant flux density (W m ⁻²)	V_{d}	deposition velocity (m s^{-1})	
	subscripts: subscripts 'e' and 'p' are used to	V	rate of reaction	
	distinguish radiant (\mathbf{R}_{e}) flux density (W m ⁻²)		subscripts: $V_{\rm c}$ velocity of carboxylation; $V_{\rm o}$	
	and photon ($\mathbf{R}_{ m p}$) flux density (mol m ⁻²) where		velocity of oxygenation; $V_{c,max}$ maximum	
	necessary; $\mathbf{R}_{absorbed}$ absorbed; $\mathbf{R}_{emitted}$		velocity of Rubisco for carboxylation	
	emitted; $\mathbf{R}_{(d)}$ dry; $\mathbf{R}_{(w)}$ wet; \mathbf{R}_{d} downward; \mathbf{R}_{u}	V	volume (m ³)	
	upward; \mathbf{R}_{n} net radiation; \mathbf{R}_{ni} net isothermal		<i>modifiers:</i> $V_{\rm e}$ expressed sap; $V_{\rm o}$ turgid volume	
_	radiation; $\mathbf{R}_{\rm R}$ radiative heat loss = $\mathbf{R}_{\rm n} - \mathbf{R}_{\rm ni}$		of cell; $V_{\rm W}$ partial molal volume of water	
R	gas constant (8.3144 J mol ^{-1} K ^{-1} or Pa m ³		$(18.048 \times 10^{-6} \text{ m}^3 \text{ mol}^{-1} \text{ at } 20^{\circ}\text{C})$	
	$mol^{-1} K^{-1}$	V	electrical potential difference (volt = $W A^{-1}$)	
6	rate of change of saturation vapour pressure	w	mixing ratio (dimensionless)	
	with temperature (Pa K ⁻¹)		subscripts: as for D	
S	second	W	Vertical wind velocity (m s ⁻¹)	
sr T	steradian	VV TAZ	Watt (J S) water content (kg m^{-2} or kg m^{-3})	
) (-)	sures (Pa)	VV	water content (kg m) or kg m)	
5i(Z) S(f)	state of development at time t	14/	subscripts: W_{ℓ} leaf, W_{max} maximum leaf mass per unit area in CO equivalents	
5(1)	heat flux into storage (W m^{-2})	~ ~	(σm^{-2})	
	time (s_h or day)	r	mole fraction	
	subscripts: t, time at solar noon: t, number of	л	modifiers: as for \boldsymbol{D} and concentration (c)	
	day in the year: t_{μ} half-time	x	distance or displacement (m)	
Г	temperature (°C or K)	Y	vield threshold (Pa)	
	subscripts: T_2 air: T_{day} dew point: T_d dry: T_a	Ŷ	economic vield (tonne ha ^{-1} or kg m ^{-2})	
	equilibrium: T_{ℓ} leaf: T_{w} wet: T_{wb} wet-bulb	-	subscript: Y _d dry matter yield	
	temperature; T _{base} non-water-stressed-baseline	Z	distance, height or depth, or atmosphere	
	temperature; $T_{\rm h}$ heated replica; $T_{\rm m}$ mean; $T_{\rm o}$		thickness (m)	
	optimum; T_{max} maximum; T_{s} surface; T_{s}		subscript: z _o roughness length	
	saturation; T_{sky} apparent radiative temperature of	Ζ	damping depth (m)	
	the sky; T_t threshold; T_u unheated replica; T_x	α	contact angle (degree or radian)	
	observed temperature at given D	α	absorptivity, absorption coefficient or	
	<i>superscript: T</i> ° reference temperature		absorptance (dimensionless)	

xiv Symbols				
		modifiers: subscripts define waveband (e.g.	ε _Y	Young's modulus (Pa)
		α_{660} or α_{S})	$\varepsilon_{\rm B}$	bulk modulus of elasticity (Pa)
	α	the azimuth or aspect of a surface (measured	3	s/y
		east from north)	ζ	ratio of the photon flux densities in the red
	α	the ratio between the woody tissue		(655–665 nm) and far-red (725–735 nm)
		(hemispheric) area index and the total plant		portions of the spectrum
		(hemispheric) area index	η	dynamic viscosity (N s m $^{-2}$ or kg m $^{-1}$ s $^{-1}$)
	α	Priestley-Taylor coefficient	θ	relative water content (dimensionless, %)
	β	solar elevation (degree or radian; complement of θ)	θ	angle from beam to normal; zenith angle of the sun (degree or radian)
	ß	Bowen ratio (dimensionless = $C/\lambda E$)	$\Delta \theta$	change in soil moisture content
	γ	psychrometer constant (Pa $K^{-1} = Pc_p/0.622\lambda$)	λ	wavelength (m)
		<i>superscript:</i> γ^* the modified psychrometer		<i>subscript:</i> λ_{m} peak wavelength of Planck
		constant (= $\gamma g_{\rm H}/g_{\rm W}$)		distribution
	γw	activity coefficient for water that measures	λ	latent heat of vaporisation of water
		departure from ideal behaviour		$(J \text{ kg}^{-1})$
	Γ	total soil heat flux ratio (dimensionless)	λ	latitude (degree or radian)
		<i>modifier</i> : Γ' energy partitioning at the soil surface	$\lambda_{\rm o}$	clumping index
	Γ	carbon dioxide compensation concentration	λ	constant; climate sensitivity parameter
		(mg m ^{-3} or mmol m ^{-3})	μ_{W}	chemical potential (J mol ⁻¹)
		<i>modifier:</i> Γ_* concentration at which CO ₂ loss by		<i>modifiers:</i> μ_W of water; μ° reference value
		oxygenation equals uptake by carboxylation	v	frequency (hertz)
	δ	deviation of isotope abundance from ratio in a	v	frequency of stomata (mm^{-2})
		standard sample (e.g. δ^{13} C)	υ	wavenumber (cm ⁻¹)
		<i>subscripts</i> : δ_{a} air; δ_{p} plant	v	kinematic viscosity (m ² s ⁻¹ = $D_{\rm M}$)
	δ	solar declination (degree)	π	pi, the ratio of circumference of a circle to its
	δ	average thickness of laminar boundary layer (m)		diameter (3.14159)
		<i>subscript:</i> δ_{eq} thickness of equivalent	П	osmotic pressure (MPa = $-\psi_{\pi}$)
		boundary layer (m)	ρ	density (often of dry air) (kg m ⁻³)
	∂	partial differential		<i>modifiers:</i> ρ_a dry air (sometimes abbreviated
	Δ	isotopic discrimination (dimensionless, %)		to $ ho$); $ ho_{ m as}$ air saturated with water vapour; $ ho_{ m i}$
		subscripts: Δ_a AOX discrimination; Δ_c COX		<i>i</i> th component of mixture; ρ^* density of leaf or
		discrimination		replica
	Δ	finite difference	ρ	reflectivity; reflection coefficient; reflectance
	ΔF	difference between steady state and maximal		or albedo (dimensionless)
		fluorescence		<i>subscripts</i> : ρ_{NIR} near infrared (= <i>N</i>); ρ_{R} red
	$\Delta T_{\rm f}$	freezing point depression (K)		$(= R)$; $\rho_{(\theta)}$ at any zenith angle θ ; others as
	ε _i	elasticities of individual reactions in a pathway		for a
	3	emissivity	σ	Stefan–Boltzmann constant (5.6703 \times 10 ^{-°}
	3	efficiency (dimensionless)		$W m^{-2} K^{-4}$
		<i>modifiers:</i> ε_p photon efficiency; ε_q quantum	σ	reflection coefficient (dimensionless)
		efficiency; $\varepsilon_{q(Pr)}$ quantum yield for	σ	surface tension (N $m^{-1} = 7.28 \times 10^{-3}$ for water
		phytochrome conversion		at 20°C)

Cambridge University Press 978-0-521-27959-8 - Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology: Third Edition Hamlyn G. Jones Frontmatter More information

Ω decoupling coefficient (dimensionless)

MAIN ABBREVIATIONS AND ACRONYMS

ABA	abscisic acid	HFC
ADP	adenosine diphosphate	HI
AOX	alternative oxidase	HIR
ATP	adenosine-5'-triphosphate	HU
BRDF	bidirectional reflectance distribution	IAA
	function	IR
BRF	bidirectional reflectance factor	IRGA
BVOC	biogenic volatile organic compound	LAD
BWB	Ball-Woodrow-Berry model	LAR
C ₃	three-carbon photosynthetic pathway	LD ₅₀
C_4	four-carbon photosynthetic pathway	LD
CAM	crassulacean acid metabolism	LFR
CFCs	chlorofluorocarbons	LHC
CGR	crop growth rate (kg $m^{-2} day^{-1}$)	LOV
COX	cytochrome oxidase	LUE
CRB	C-repeat binding proteins	MAS
CWSI	crop water stress index	MIPs
DELLA	DELLA proteins are transcriptional	MOS
	regulators that regulate gibberellic acid	N_2
	signalling	NAC
DREB	deyhdration-responsive element binding	NAD
	proteins	
DVI	difference vegetation index	NAD
ETR	electron transport rate through PSII	
EUW	Effective use of water	NAR
FACE	free-air carbon dioxide enrichment	NDV
	experiment	NPQ
FADH ₂	reduced flavin adenine dinucleotide	
fAPAR	fraction of absorbed photosynthetically	0AA
	active radiation	OTC
FR	far red	P ₆₈₀
FSPM	functional-structural plant models	P ₇₀₀
FvCB	the Farquhar-von Caemmerer-Berry	Ра
	model of photosynthesis	PAR
GCM	global circulation model	
GDD	growing degree days (see D)	PBM
GNDVI	green normalised difference vegetation index	PCO
GWP	global warming potential	PCR

HFC	hydrofluorocarbons
HI	harvest index
HIR	high irradiance response
HU	'heat' units (should be avoided)
IAA	indole acetic acid
IR	infrared
IRGA	infrared gas analyser
LAD	leaf area duration
LAR	leaf area ratio
LD ₅₀	minimum survival temperatures
LD	long-day (also LSD for long–short day)
LFR	low fluence rate response
LHC	light harvesting complex
LOV	light-oxygen-voltage domains
LUE	light use efficiency
MAS	marker-assisted selection
MIPs	major intrinsic proteins
MOST	Monin–Obukhov similarity theory
N ₂	nitrogen
NAC	a superfamily of transcription factors
$NADP^+$	nicotinamide adenine dinucleotide
	phosphate
NADPH	reduced nicotinamide adenine
	dinucleotide phosphate
NAR	net assimilation rate
NDVI	normalised difference vegetation index
NPQ	non-photochemical quenching
	$((F_{\rm m}/F_{\rm m}') - 1)$
0AA	oxaloacetate
OTC	open-top chamber
P ₆₈₀	reaction centre in PSII
P ₇₀₀	reaction centre in PSI
Pa	pascal (N m ^{-2} or kg m ^{-1} s ^{-2})
PAR	photosynthetically active radiation
	(400–700 nm)
PBM	process-based models
PCO	photorespiratory carbon cycle
PCR	photosynthetic carbon reduction cycle

Cambridge University Press 978-0-521-27959-8 - Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology: Third Edition Hamlyn G. Jones Frontmatter More information

Main abbreviations and acronyms (xvii

PDB	Peedee belemnite formation in South	RN
	Carolina	RN
PEP	phospho <i>enol</i> pyruvate	RO
Pfr	far-red absorbing form of phytochrome	Ru
PGA	phosphoglyceric acid	
pН	negative logarithm of hydrogen ion	Ru
	activity	RV
phy	phytochrome	SA
PHY	PHY-A, PHY-B, etc. phytochrome	SD
	proteins (genes in italic)	SH
phot1,	phototropins	SL
phot2		SN
PIF	phytochrome interacting factor (e.g. PIF4	TC
	and PIF5)	TE
PIPs	plasma membrane intrinsic proteins	TIF
ppb	volume parts per billion (10 ⁹)	TP
ppt	volume parts per trillion (10 ¹²)	UA
Pr	red light absorbing form of phytochrome	UV
PRI	photochemical reflectance index	
PSI	photosystem I	VI
PSII	photosystem II	VL
Q_A , Q_B	quinone acceptors	vp
QTL	quantitative trait loci	W
R	red light	W
RF	radiative forcing (W m^{-2})	
RGR	relative growth rate (day ⁻¹)	ZT

RNA	ribonucleic acid
RNAi	RNA interference
ROS	reactive oxygen species
Rubisco	ribulose-1,5-bisphosphate carboxylase-
	oxygenase
RuBP	ribulose-1,5-bisphosphate
RVI	ratio vegetation index
SAVI	soil adjusted vegetation index
SD	short-day (also SLD for short-long day)
SHAM	salicylhydroxamic acid
SLA	specific leaf area
SNP	single nucleotide polymorphism
TCA	tricarboxylic acid
TE	transpiration efficiency
TIPs	tonoplast intrinsic proteins
TPU	triose phosphate utilisation
UAV	unmanned aerial vehicles
UV	ultraviolet (UV-A: 315–400 nm, UV-B:
	280–315 nm, UV-C: <280 nm)
VI	vegetation index
VLFR	very low fluence rate response
vpm	volume parts per million
WUE	water use efficiency
WUE*	water use efficiency integrated over the
	life of a plant
ZTL	ZEITLUPE family proteins