Biophysics and biochemistry at low temperatures
Freeze, freeze, thou bitter sky,
That dost not bite so nigh
 As benefits forgot:
Though thou the waters warp,
Thy sting is not so sharp
 As friend remember’d not.

As You Like It
William Shakespeare
Biophysics and biochemistry at low temperatures

FELIX FRANKS

Director, Cryopreservation Division, Pafra Ltd, Cambridge
and Senior Research Fellow, Department of Botany, University of Cambridge

CAMBRIDGE UNIVERSITY PRESS

Cambridge
London New York New Rochelle
Melbourne Sydney
Contents

Acknowledgements vii Foreword ix

1 Water, temperature and life 1
 Low temperature in the ecosphere 1
 Water and life 2
 The perturbation of water by solutes – hydration interactions 5
 Hydration, as reflected in solute–solute interactions 11
 Life, low temperatures and freezing 15
 Strategies for survival 17
 Low temperature preservation in medicine and industry 18

2 The physics of water at subzero temperatures 21
 Terminology 21
 Phase behaviour of ice 23
 Nucleation of ice in pure water 25
 Nucleation of ice by particulate matter 31
 Ice crystal growth 34

3 Physical chemistry of aqueous solutions at subzero temperatures 37
 Homogeneous solutions at low temperatures 37
 Freezing of dilute aqueous solutions 45
 Freezing of concentrated aqueous solutions 46
 Supersaturated solutions: metastable water 50
 Equilibria and kinetics in part frozen systems 57

4 Cryobiochemistry – responses of proteins to suboptimal temperatures 62
 Scope and definitions 62
 The thermal stability of native proteins 63
 Enzyme reactivity, structure and kinetics at low temperatures 78
 Proteins in partly frozen solutions 82
 The protection of proteins against denaturation 86

5 The single cell: responses to chill and freezing 90
 The cell as a heterogeneous system 90
 Low temperature stress – biochemical aspects 91
 Low temperature effects on membrane processes 97
Contents

vi

Low temperature germination of seeds 99
Cold shock and cold hardening 102
Freezing of single cells 105

6 Freeze avoidance in living organisms 112
Strategies for cold resistance 112
Chill sensitivity and resistance in plants 113
Freeze susceptibility and undercooling 116
Antifreeze peptides 117
Freezing point depressants 119
Deep undercooling in plants 121
Other freeze avoidance mechanisms 124

7 Freeze tolerance in living organisms 127
Freeze tolerance: a misnomer? 127
Phenomenology of frost hardening and injury 128
Photosynthesis at subfreezing temperatures 133
Biochemistry of freeze protection 135
Physical chemistry of freeze protection 139
Ice nucleating agents 145

8 Cryobiology: the laboratory preservation of cells, tissues and organs 148
Objectives 148
Basic problems of cell freezing: the function of chemical cryoprotectants 149
Mechanisms of cryoprotectant action 154
Cell membrane permeability and its temperature dependence 162
Membrane leakage and cell injury 163
Tissue and organ preservation: future prospects 165

9 The technology of metastable water 167
Water at subzero temperatures: thermodynamics versus kinetics 167
The vitrification of liquid water 168
Non-equilibrium cooling and the crystallization of ice 174
Low temperature techniques in electron microscopy 176
Chilling and freezing in food processing and storage 180

10 Matters arising 188
Water and aqueous solutions 189
Cryobiocchemistry 190
Mechanisms of chill and frost hardening 191
Cryobiology and cryotechnology 192

References 194
Index 206
Acknowledgements

It is a pleasure to acknowledge my debt of gratitude for various services rendered, including lessons in simple biochemistry and plant physiology, reading various parts of the draft manuscript, making available results prior to publication and discussing various contentious issues: Tom ap Rees, Ian Woodward, Patrick Echlin, Peter Lillford, John Morris, Harry Levine, Louise Slade and John Blanshard.

It is a special pleasure to thank my wife Hedy who, as on so many previous occasions, provided sterling help with important tasks such as checking and typing the bibliography and proof reading.
Foreword

Cold is the fiercest enemy of many forms of life. This is due partly to the general slowing down of physiological processes at suboptimal temperatures, but mainly to the fact that the essential chemical of life – water – happens to freeze at a temperature which is widespread in the ecosphere. The freezing of tissue water and the resulting freeze concentration of all soluble matter can have devastating consequences, unless the organism is properly prepared to resist the physiological stresses.

There exists a vast literature describing the symptoms of cold injury and the metabolic and morphological changes which various forms of life undergo during the cold hardening period. The connection between injury and survival on the one hand, and the temperature induced changes in the aqueous substrate on the other, is seldom considered. The physical properties of water are extremely sensitive to changes in temperature and changes in the concentrations of dissolved solute species. Such sensitivity may well be amplified in the responses of biological structures and life processes to changes in the hydrogen bonding patterns that exist in water.

During the past six years my colleagues and I have been engaged in studying the responses of in vitro and in vivo systems to low temperatures, and we have come to realize the interplay of a wide range of principles and disciplines: the mysteries of undercooled water, the in vivo nucleation and propagation of ice, both spontaneous and catalysed, cold labile proteins, the properties of concentrated aqueous solutions, especially those of carbohydrate origin, cryobioc hemistry, biological antifreezes and biogenic nucleation catalysts, cold hardening mechanisms, laboratory cryobiology, cell membrane energetics and dynamics, and others.

I thank the cloud physicists who taught me about undercooled water, the metallurgists who taught me about nucleation in condensed systems, the haematologists who explained the intricacies of the red cell membrane,
X

Foreword

the insect physiologists who cleared up my misconceptions about the developmental stages of insects and the many others who helped me to synthesize my own ideas about causes and effects in low temperature injury and resistance. I thank them all.

The approach adopted in this book is that of one trained as a physical scientist who drifted into the life sciences fairly late in life and never received any formal teaching in biological dogma. The vocabulary is hard to assimilate and even harder to memorize. The book developed from a lecture course which I gave in the Department of Botany several years ago. It is by no means a comprehensive account of the subject. Its purpose is to sketch out the overlapping areas and disciplines where the interested student must search for solutions to the many unresolved problems.

Cambridge, 1985