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Introduction

Through the unknown, remembered gate
When the last of earth left to discover
Is that which was the beginning

(T. S. Eliot: Little Gidding)

The notion of 'parallelism' has always played an important role
in mathematics. Euclid's famous 'parallel postulate' (in the form, due
to Proclus, known as 'Playfair's axiom') asserted that, given any line
and any point in the plane, the given point lies on a unique line parallel
to the given line. A long history of controversy surrounded the question
of whether this postulate is self-evident, or even necessarily true. The
controversy was laid to rest when it was demonstrated that 'non-
euclidean geometries’, in which Euclid's postulate fails, are valid
objects of mathematical study.

The point of view in this book is the opposite of that of non-
euclidean geometry, which abandons the parallel postulate while retaining
the other geometric axioms. The parallelisms studied here satisfy the
parallel postulate, but all other restrictive conditions are cleared away;
in place of geometric 'lines’, I consider all subsets of the point set X
which have cardinality t, for some given integer t. Thus the parallel
relation is the only structure these 'geometries’ possess.

The book is largely self-contained. Each chapter except the last
is followed by one or more appendices treating topics relevant to that
chapter. A glance at the titles of the appendices shows that the theory
of parallelisms draws on (and often enriches) such diverse areas of
finite mathematics as network flows, perfect codes, designs, Latin
squares, and multiply-transitive permutation groups.

In addition to the basic definitions and lemmas, Chapter 1 con-
tains a proof that the condition that t divides n = ]Xl is necessary and

sufficient for the existence of a parallelism, This is a recent result of
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Baranyai; the proof uses the Integrity Theorem for network flows, which
is described and proved in the Appendix to that chapter.

In Chapter 2, all those parallelisms satisfying a certain geometric
condition called the 'parallelogram property' are determined. This in-
volves Tietdviinen's determination of all perfect binary linear error-
correcting codes, given in an Appendex. (A second Appendex describes
association schemes and metrically regular graphs; these provide a
setting for a more general theory of perfect codes, and will also be
needed in Chapter 5.) The next Chapter is closely related. It describes
a construction of parallelisms from Steiner systems, and shows how a
parallelism constructed in this way can be recognized, by means of a
property which generalizes the parallelogram property. Thus, the main
result of Chapter 2 can be used to give geometric characterizations of
certain Steiner systems. Among these are the famous Witt systems
S{4, 7, 23) and S(5, 8, 24); the uniqueness of these systems is demon-
strated in the Appendix.

In the case t = 2, the 2-element subsets of X can be identified
with the edges of the complete graph Kn with vertex set X; a parallel-
ism is the same thing as a (n-1)-edge-colouring of Kn' Several aspects
of this case are treated in Chapter 4: rough estimates for the number
of different parallelisms (these depend on estimates for the number of
n X n Latin squares, given in the Appendix); structure and automor-
phisms of some special parallelisms, derived from Abelian groups and
Steiner triple systems; structure of 2-coloured subgraphs, including
some remarks on colourings in which all 2-coloured subgraphs are iso-
morphic.

The last topic provides motivation for Chapter 5. Suppose a
parallelism has the property that the configurations formed by pairs of
parallel classes are all isomorphic: then t = 3, Such parallelisms with
t = 3 are closely related to certain incidence structures called biplanes;
we define a biplanar parallelism to be one which bears this relation to a
biplane, Biplanarity is a generalization of the parallelogram property
when t = 3. A similar generalization for arbitrary t is the assumption
that a graph associated with the parallelism (defined in Chapter 1) is

metrically regular. This condition is empty for t = 2, equivalent to
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biplanarity for t = 3, and apparently very restrictive for t = 4, though
the complete truth is not yet known. The Appendix discusses biplanes in
the context of symmetric designs giving the Bruck-Ryser-Chowla theorem
and some results on polarities.

Chapter 6 concerns parallelisms whose automorphism groups have
a high degree of transitivity, The highest possible degree for a non-
trivial parallelism is t + 1; all examples attaining this bound are deter-
mined. The general theme is that large groups of automorphisms tend
to force the conditions of the previous chapters to occur. The appendix
contains the necessary group-theoretic tools.

The final Chapter concerns possible generalizations of the con-
cept of parallelism as studied here. The two main directions are: more
general resolutions, of non-trivial structures into non-trivial structures;
and objects called 'partition systems’, which directly generalize parallel-
isms, Some examples are given, but no general theory exists.

Prerequisites for this book are

(a) Linear algebra: linear transformations on real vector
spaces; finite fields.

(b)  Group theory: up to Sylow's theorems; some familiarity
with 'classical’ groups.

(c) Number theory: representations of integers as sums of
squares; a little quadratic reciprocity.

(d) Topology: we make an inessential appeal to compactness at
one point,

The book is written primarily to interest readers in the theory of parallel-
isms; but, if anyone is stimulated to dig deeper into one of the other
topics, using the references given, it will have achieved something. The
common application of these topics may serve as additional motivation.

My gratitude is due to my wife, without whom this would never
have progressed past the 'good idea' stage; to audiences at Westfield
College and elsewhere, who listened to parts of the material; and to the

referee, who suggested several improvements in the presentation.
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|- The existence theorem

Here the impossible union
Of spheres of existence is actual

(T. S. Eliot: The Dry Salvages)

Throughout this book, X denotes a finite set of n elements called
points; we write n= ]Xl . By analogy with the commonest notation for
binomial coefficients, we write (}t() for the set of all subsets of X con-

taining t points; members of this set are called t-subsets of X, Thus
@ =tylyex, vl =t),

and ’()t()] = (?). We ensure that ()t() is non-empty by requiring
0=t=n.

A subset of ()t() partitions X if every point of X lies in just
one member of the subset. Clearly it is necessary and sufficient for the
existence of such a partition that t divides n.

A parallelism of ( ) can be defined in two equivalent ways. It
is an equivalence relatmn ” on ( ) satisfying Playfalr s axiom: for
any x € X and any Q e( ), there is a unique Q' € ( } such that x € Q'
and Q”Q'. This cond1t10n asserts simply that each equlvalence class
partitions X. Thus a parallelism may be defined alternatively as a
partition of ()t() into subsets called parallel classes, each of which par-

titions X. The number of t-subsets in a partition is n/; so the number
of parallel classes is

n-1
©F=G )

This can be seen another way. Given a point x € X, there is a one-to-
X - {x}

t - 1 )-

(Each parallel class contains just one set containing x; this set has the

one correspondence between the set of parallel classes and (

form {x)} UQ, where Q is a (t- 1)-subset of X - {x}. Moreover, any
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t-subset containing x lies in a unique parallel class. )

There are some trivial examples of parallelisms:

(i) t=1, n arbitrary: a single parallel class, namely ()1().

(ii) t= n: a single parallel class containing the unique member
X. Slightly less trivially,

(iii) n = 2t: each t-subset is parallel to its complement, Any
partition of X into two t-subsets is a parallel class.

We shall use the neutral word 'subspace' to denote a subset X'
of X for which a parallelism is induced on ()t(). That is, a subspace is
a subset X' of X with the property that, if Q € ()t('), x €X', xeQ' e(}t(),
and QJ|Q', then Q' € X'. The formal definition of a subspace admits
the possibility that [X'| < t; in this case, we do not strictly have a
parallelism induced on (}i'), since we have adopted the convention n =t
for parallelisms, It will be convenient, however, to allow subspaces to
have fewer than t points. (Thus any subset with fewer than t points
is a subspace. )

We turn now to the proof of the general existence theorem, due to
Z. Baranyai [2].

Theorem 1.1. Let n and t be positive integers, and |X| =n

There is a parallelism of ()t() if and only if t divides n.

Proof, We have already noted that the condition t|n is neces-
sary; we must prove that it is sufficient. The proof is by induction on n,
Thus, for example, to find a parallelism with t =3, n =9, it is enough
to find a collection of partitions of a set of 8 points into sets of size 2, 3,
and 3, with the property that any set of size 2 or 3 is contained in exactly
one of these partitions; then we simply take an extra point and adjoin
it to each set of size 2. We see already that we require a more general
object than a simple parallelism; we must allow sets of differing cardi-
nalities, But worse is to come, At the next step, we require partitions
of a set of 7 points into sets with sizes 1, 3, 2 or 2, 2, 3; when we add
the extra point, in the second case we need a rule about which set of
size 2 must receive this point. (This is the root of the difficulty.) Even
when we have formulated a suitable inductive hypothesis accounting for

these complications, we need an important theorem from the theory of
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network flows to transfer it from n to n- 1. All this was done by
Baranyai.

We shall define, for given n, a datum on n to be an r-tuple
(t1’ cees tr), where r > 0 and t1’ cees tr are integers satisfying
0= ti =n for all i, together with an r X s matrix A = (aij) of non-

negative integers satisfying

O da, = ) s
1

11]
T
(i) thlau=
T
{Since Z Z ta,=ns= Zt( ), we have s = 2 (n _i).)
i=1 j= 1! ij =11 1 i=1 1

Theorem 1.2, Given a datum ((ti), (ai].)) on n, there exist sets

o (1=si=r, 1=j=s) of subsets of X, with |X| =n, laijl =2,
having the properties

() for afixed i, the sets @, form a partition of (i();
i
(ii) for afixed j, the members of the sets Gij form a partition

of X,

(Thus, if all ’ci are distinct, we have a collection of partitions
of X into alj sets of size t1’ ceey arj sets of size tr’ with the pro-
perty that each ti-set occurs exactly once. With the datum defined by
r=1, tl =1t alj =n/t for all j, we obtain Theorem 1.1. However,
we do not assume that all ti must be distinct, Note that conditions (i)
and (ii) in the definition of a datum are necessary for conclusions (i) and
(ii) of the theorem, )

The proof, as we have indicated, is by induction on n. Clearly
the theorem holds if n = 1. So assume we are given a datum on n, with
n > 1, and assume the theorem holds for all data on n - 1, Consider
the network (see Appendix 1A) whose vertices are a source S, a sink §',
r vertices R (1=i=r), and s vertices C] (1 =j=s); the edges
are (S, R) w1th capacity ( ) l=i=r), (R C. ) with capacity

1 for those pairs (i, j) for wh1ch ai]. # 0 (and only those), and (C]., S
with capacity 1 (1 =j =s). Considering edges out of S (or into §'),

we see that the capacity of the network is at most
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2(?:% s,
i=1 1

In fact, this is the exact capacity. For consider the flow ¢ defined as
follows: 9(S, R,) = (n - 1) (I=1=7); R, C)=ta,/n (1=i=r,

1 =j=g) (note that th1s is at most 1, and is 0 if Ri and Cj are not
joined); ¢(Cj, S')=1 (1 =j=s). The conditions that the flows into and
out of each vertex Ri or C, are equal are precisely conditions (i) and
(ii) in the definition of a datum. (For example, the flow out of Ri is
t
-1
3 ta/m=—( )—(“ T

]—1
Thus, by the Integrlty Theorem (Theorem 1A, 3), there is a maxi-

mal flow ¢' whose value on any edge is an integer. Clearly
9, R)—(“ P @=i=1), ¢(C; S)=1(1=j=s). Let

..—¢(R., C.) for 1si=<r, 1 =j=s, Theneach ei]. is 0 or 1;

n-1 . < s N
]E & = (ti Wk lEle =1; and &~ 0 only if 2y~ 0.
Construct a datum on n - 1 as follows. Put t’ik = ti and
* * = - * = <i=
t1+r t -1 1l=i=r); a]—ai]. ei]., ai+rj elj l=i=r,

1=j= s). The condition 0 = t;‘ =n -1 will be violated only if ti =n
or ti-r = 0, but then the corresponding row consists entirely of zeros
and can be deleted or ignored. To verify that this is a datum: a;‘]. = (Q:
for 1=i=r, aij and ei]. are integers, ei]. =1, and ei]. > 0 only if

aij> 0. For r+1=<i=2r itis clear.

s

-1 N
s 2% .Z ey = () - ( )= (nt )=y ) (L=t=n)
Z ax* = ]" 1 1
e = s _ _
j=1 ij Zei-r'=(tn 11)—(n*1)(r+1<1<2r)
j=1 "1J i-r i
2r T
Za:tl*= Z(a - e )t+ Ze (t -1)
j=1 Y 1—1 =1 !
r
= a .t - 2 e,.
i§1 132, 1
=n-1,
;
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So, by the induction hypothesis, there are sets G;‘j of subsets
of X - {xo} satisfying the appropriate conditions. Note that, for given
j and 1 =i =r, there is exactly one non-empty @ik+rj’ which consists
of a single (ti - 1)-set Aij (say). Now put

Gx if e, =0,
ij ij

* i —
Gij U {Aij U {xo 1}t & 1.

We claim that these sets satisfy the conclusion of the theorem.

First,

]a,,]= ]@;J.]:an if eij=0’

1 x| +1=(, -e.)+1=a, if e, =1.
ij ij ij ij ij

(i) Let Y bea ti—subset of X. If X, £Y, then Y occurs
exactly once in Ct’i*j; if X, €Y, then Y - {x0 } occurs exactly once in
ai*+rj' In either case, Y occurs exactly once in Cii]..

(ii) For fixed j, the members of @;‘j partition X - {XO}, and
x0 has been added to just one of them,

This completes the proof of the theorem, /

In his paper [2], Baranyai proves a more general result than
Theorem 1. 2, which implies (for example) the existence of a partition
of ()t() into classes with the property that each point lies in t/(n, t)
members of each class, for any n and t. His data are the same as
ours except that condition (ii) is not required; his main theorem is the
same as ours except that (ii) is replaced by the statement

(ii)' For any j, and for all x, x' € X, the number of members
r
of U @i]. containing x differs from the number containing x' by at
i=1
most one.

The proof proceeds along similar lines to that given here, but a more
general version of the Integrity Theorem is needed, dealing with net-
works in which the flow in any edge is bounded above and below by
integers.

The direction of subsequent research in similar subjects (such as

Steiner triple systems and Latin squares), for which general existence
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theorems have been proved, suggests several questions.

Question 1. 1. How many different parallelisms of (}t() are there
when t divides n?

In Chapter 4 we will give a partial answer to this question, in
the form of upper and lower limits as n = «, in the case t=2, For
larger t, the problem is open. (The reader will be able to supply crude

upper bounds. )

Question 1, 2. Under what conditions can partial parallelisms be
extended to parallelisms?

This question is not precisely formulated, because it is not clear
what the definition of a 'partial parallelism' should be. We could define
it to be a collection ot partitions of X into parts of size at most t such
that each set of size t is a part of at most one partition; or (more
restrictedly) the same thing with one 'at most' replaced by 'exactly’.
(The structure induced on a subset of X by a parallelism satisfies the
condition with the second 'at most' replaced by 'exactly'.)

We conclude this chapter with some more general theory of
parallelisms. Any permutation g :xmxg of a set X induces in a
natural way a permutation of ()t() :QP Qg = {xg|x €Q}. We define an
automorphism of a parallelism to be a permutation which 'maps parallel
pairs of t-subsets to parallel pairs'; that is, g is an automorphism if,
whenever Ql, Q2 € ()t() and Q1 ”Qz’ we have ng”ng. A related con-
cept is that of a strict automorphism, a permutation which 'maps t-

subsets to parallel t-subsets'; that is, g is a strict automorphism if,

for all Q € (}t(), we have Qg HQ Thus, any strict automorphism is an
automorphism. (If g is a strict automorphism and Ql ”Qz’ then
ng”Ql ”Q2 ”Q2 g.) So the set of automorphisms is a group, in which the
set of strict automorphisms is a subgroup. Since an automorphism pre-
serves the relation of parallelism, it maps any parallel class to another
parallel class, and so induces a permutation on the set of parallel classes,
The strict automorphism group is just the kernel of this representation
(the set of automorphisms fixing all parallel classes), and so is a normal
subgroup.
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Consider the following example, which will be important later,
X is the set of vectors in a vector space of dimension d over the field
GF(2) with two elements; n = 2d. Define a parallelism of (;() by the
rule that {xl, X, H {x}, X, } if and only if x, +x =x +x,. The
reader should verify that this is a parallelism; we call it the affine line-
parallelism in AG1 (d, 2). (This notation will be elaborated later.) For
all x € X, the transformation Sy which adds x to everything is a strict
automorphism. (For (x1 +x) + (x2 +x) = X, + X,, SO
{x1 +x, x + x| {X1’ X, }.) Thus the strict automorphism group con-
tains the additive group of X, which is an elementary abelian 2-group,
transitive and regular on X. (For terminology of permutation groups,
see Appendix 6A,)

Theorem 1.3, Let A be the group of strict automorphisms of a
parallelism of (), with n> t> 1.

(i) If t=2, then A is an elementary abelian 2-group acting

semiregularly on X; A is transitive only in the case of the affine line-

parallelisms.

(i) If t> 2, then A=1,

Proof. 1If a strict automorphism fixes X, and maps X, to X,
then it maps every t-subset containing X, and X, into a parallel (and
hence equal) t-subset containing X, and X, and it fixes the intersection
of all these subsets, which is just {xl, x, }. So x, = x,. This means
that A is semiregular: only the identity fixes any point, Furthermore,
if g is a strict automorphism mapping X, to X, (x1 #xz), then g
maps every t-subset containing X, and X, to a parallel (and hence
equal) t-subset containing xz, and it fixes the intersection of all these
subsets, which is just {xl, X, }. Thus X,8=X,. Then xlg2 =X,
so g2 = 1. So every non-identity element g € A has order 2, whence
A is elementary abelian.

If A is transitive and t = 2, then for any point x, a parallel
class consists of the images under A of a pair containing x, and thus
the parallelism is uniquely determined. So it must be the same as the
affine line-parallelism. Alternatively, take a point X, € X, every

element g € A can be identified with the point X8 € X (Appendix 6A).

10
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